www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Anfangswertproblem
Anfangswertproblem < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anfangswertproblem: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:14 Di 21.10.2008
Autor: jumape

Aufgabe
Berechnen Sie die Lösung von
[mm] x'(t)=\bruch{4}{\pi} arctan(tan(\bruch{\pi}{2}t)) [/mm]
x(0)=0
und fertigen Sie eine Skizze an.

Ich habe leider keine Ahnung wie die Stammfunktion von tan und arctan sind und ich weiß auch nicht ob man da die beiden gegeneinander aufheben darf oder muss man da verschiedene problematische Stellen betrachten ?
Es wäre nett wenn mir jemand helfen könnte.

        
Bezug
Anfangswertproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:17 Di 21.10.2008
Autor: fred97


> Berechnen Sie die Lösung von
> [mm]x'(t)=bruch{4}{\pi} arctan(tan(bruch{\pi}{2}t))[/mm]
>  x(0)=0
>  und fertigen Sie eine Skizze an.
>  Ich habe leider keine Ahnung wie die Stammfunktion von tan
> und arctan sind und ich weiß auch nicht ob man da die
> beiden gegeneinander aufheben darf oder muss man da
> verschiedene problematische Stellen betrachten ?
>  Es wäre nett wenn mir jemand helfen könnte.


Schreib die DGL doch bitte ordebtlich auf

FRED

Bezug
        
Bezug
Anfangswertproblem: richtige Aufgabenstellung?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:39 Di 21.10.2008
Autor: Roadrunner

Hallo jumape!


> Berechnen Sie die Lösung von [mm]x'(t)=\bruch{4}{\pi} arctan(tan(\bruch{\pi}{2}t))[/mm]

Ist das wirklich die korrekte Aufgabenstellung? Denn so eliminieren sich die beiden Funktionen [mm] $\tan$ [/mm] und [mm] $\arctan$ [/mm] , so dass verbleibt:
$$x'(t) \ = \ [mm] \bruch{4}{\pi}*\bruch{\pi}{2}*t [/mm]  \ = \ 2*t$$
Und das ist ja nun schnell mittels Integration zu lösen ...


Gruß vom
Roadrunner


Bezug
                
Bezug
Anfangswertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:51 Di 21.10.2008
Autor: Aleksa

ja, die Aufgabe ist richtig, es fehlt noch die bed. x(0)=0

aber wie kann man das durch Integration lösen?

Bezug
                        
Bezug
Anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 17:55 Di 21.10.2008
Autor: fred97


> ja, die Aufgabe ist richtig, es fehlt noch die bed. x(0)=0
>  
> aber wie kann man das durch Integration lösen?


Wie Roadrunner schon schrieb: es ist x'(t) = 2t.

Also ist x(t) = [mm] t^2+c. [/mm] Wegen x(0) = 0 , ist c= 0, somit: x(t) = [mm] t^2 [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de