www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Anfangswertproblem
Anfangswertproblem < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anfangswertproblem: Eindeutigkeit und Existenz
Status: (Frage) beantwortet Status 
Datum: 16:02 Sa 25.06.2011
Autor: rammy

Aufgabe
In meinen Lernunterlagen steht folgender Satz:
(Existenz- und Eindeutigkeitssatz): Ist ein AWP (Anfangswertproblem) mit y'=f(x)g(y) und [mm] y(x_0)=y_0 [/mm] gegeben und sind f und g im jeweiligen Intervall, also f in I und g in J stetig und [mm] g(y)\not=0, [/mm] so existiert eine Lösung des AWP in einer Umgebung von [mm] x_0. [/mm] Die Lösung ergibt sich aus...

durch Auflösen nach y. (mit ... ist die Trennung der Variablen gemeint).

Meine Frage ist nun:

Wenn ich ein AWP gegeben habe mit [mm] y'=\wurzel{|y|} [/mm] und [mm] y(x_0)=y_0, [/mm] ist die Lösung nicht eindeutig oder? Ich kann zwar Lösung zusammensetzen, welche in ganz IR dann existieren, aber für das AWP selbst gibt es keine eindeutige Lösung oder?

Liege ich mit meinen Annahmen falsch?


        
Bezug
Anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 16:19 Sa 25.06.2011
Autor: fred97


> In meinen Lernunterlagen steht folgender Satz:
>  (Existenz- und Eindeutigkeitssatz): Ist ein AWP
> (Anfangswertproblem) mit y'=f(x)g(y) und [mm]y(x_0)=y_0[/mm] gegeben
> und sind f und g im jeweiligen Intervall, also f in I und g
> in J stetig und [mm]g(y)\not=0,[/mm] so existiert eine Lösung des
> AWP in einer Umgebung von [mm]x_0.[/mm] Die Lösung ergibt sich
> aus...
>  
> durch Auflösen nach y. (mit ... ist die Trennung der
> Variablen gemeint).
>  Meine Frage ist nun:
>  
> Wenn ich ein AWP gegeben habe mit [mm]y'=\wurzel{|y|}[/mm] und
> [mm]y(x_0)=y_0,[/mm] ist die Lösung nicht eindeutig oder? Ich kann
> zwar Lösung zusammensetzen, welche in ganz IR dann
> existieren, aber für das AWP selbst gibt es keine
> eindeutige Lösung oder?
>  
> Liege ich mit meinen Annahmen falsch?

Nein, Du liegst richtig ! Schau mal in

   W.Walter: Gew. Differentialgleichungen
      (Seite 14)

FRED

>  


Bezug
                
Bezug
Anfangswertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:29 Sa 25.06.2011
Autor: rammy

Ah, danke.

Ich habe nur Probleme bei der Argumentation, wieso es keine Lösung fürs AWP gibt, wie kann ich da am besten argumentieren?

Bezug
                        
Bezug
Anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 16:34 Sa 25.06.2011
Autor: fred97

Lösungen gibt es durchaus !

AWP  :    (*) [mm] y'=\wurzel{|y|}, [/mm] y(0)=0

Setze [mm] y_1(x)=x^2/4, [/mm] für x>0 und [mm] y_1(x)=0 [/mm] für x [mm] \le [/mm] 0

Setze [mm] y_2(x)=x^2/4, [/mm] für x>0 und [mm] y_2(x)=0 [/mm] für -1 [mm] \lex \le [/mm] 0 und [mm] y_2(x)=\bruch{-(x+1)^2}{4} [/mm]  für x<-1

Dann sind [mm] y_1 [/mm] und [mm] y_2 [/mm] zwei Lösungen des AWPs.

FRED



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de