www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Anfangswertprobleme
Anfangswertprobleme < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anfangswertprobleme: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 10:20 Mi 26.09.2007
Autor: ragsupporter

Aufgabe
Lösen Sie folgende Anfangswertprobleme!

a) [mm]y'+5y=0[/mm] für [mm]y(0)=2[/mm]
b) [mm]y'+5y=1[/mm] für [mm]y(0)=0[/mm]
c) [mm]y'+\bruch{y}{x+1}[/mm] für [mm]y(0)=1[/mm]

Schönen Guten Morgen

Leider habe ich zu diesem Thema nur ein sehr kurz gehaltenes Beispiel im Internet gefunden.

daraus habe ich mal die ansätze für a) und b) gemacht wobei ich glaube, dass ich mich bei b) irgendwie arg verrechnet habe, da ich am ende auf eine division durch 0 komme.

ansatz zu a):

[Dateianhang nicht öffentlich]

ansatz zu b):

[Dateianhang nicht öffentlich]


c) muss ich noch jetzt noch rechnen.

wäre super wenn mir jemand sagen obs richtig oder falsch ist bzw. wo und wie ich mich verhaspelt habe.

lg markus

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Anhang Nr. 2 (Typ: JPG) [nicht öffentlich]
        
Bezug
Anfangswertprobleme: Antwort
Status: (Antwort) fertig Status 
Datum: 11:22 Mi 26.09.2007
Autor: leduart

Hallo
1. du suchst eine Funktion, keine Zahl.
2. du schreibst so, dass man nicht zitieren kann, und deshalb die Beantwortung schwer wird.
a)y'=-5y
Dein Ansatz ist nicht falsch, schneller geht bei solchen linearen Dgl mit konstanten Koeffizienten immer der Ansatz [mm] y=C*e^{\lambda*x} [/mm] ergibt hier [mm] y=C*e^{-5*x} [/mm]
Anfangswert einsetzen: 2=C
also [mm] y=2*e^{-5x} [/mm]
noch richtig bei dir ist lny=5*lnc -5x
danach ists falsch
das ergäbe nämlich [mm] y=e^{5*lnc}*e^{-5x} [/mm]
und damit auch mein ergebnis.
Besser ist vor dem Einsetzen des Anfangswertes y zu bestimmen.
Auch bei b) ists noch richtig bis
ln(1-5y)=-5*(x+c)  (kein Grund für lnc statt c)
daraus [mm] 1-5y=e^{-5x}*C [/mm]
[mm] y=1/5-C/5*e^{-5x} [/mm]
jetzt Anfangswert einsetzen  folgt C=1
[mm] y=1/5*(1-e^{-5x}) [/mm]

Gruss leduart

Bezug
                
Bezug
Anfangswertprobleme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:08 Mi 26.09.2007
Autor: ragsupporter

danke für die antwort, aber so ein paar sachen sind mir noch ein bissl unklar.

also zu a)

wieso ist [mm] y=2\cdot{}e^{-5x} [/mm] gleich
[mm] y=e^{5\cdot{}lnc}\cdot{}e^{-5x} [/mm] ?

desweiteren verstehe ich folgendes nicht so recht:

ich habe hier im Binomi (schwarze Bibel) die Formel gefunden die gilt ja quasi nur für homogene lineare DGL.

Hier steht:

Berechnung von [mm]y_{H}[/mm]

(1) Raten einer Lösung oder
(2) Formel: [mm]y_{H}=c*e^{-A(x)}[/mm] (das ist ja die Formel mit der du auch gerechnet hast)
(3) Berechnung von [mm]y_1[/mm] mittels Trennung der Variablen

Stets hat [mm]y_{H}[/mm] die Form [mm]y_{H}=c*y_{1}[/mm]

also ist meine [mm]e^{-A(x)}[/mm] auch immer mein [mm]y_{1}[/mm] oder wie?

aso und wieso kann ich aus der Funktion dann nicht nen Wert mit dem gegebenem [mm]y(0)=2[/mm] berechnen? wäre das den so falsch?

mfg markus



Bezug
                        
Bezug
Anfangswertprobleme: Antwort
Status: (Antwort) fertig Status 
Datum: 15:20 Mi 26.09.2007
Autor: Event_Horizon


> danke für die antwort, aber so ein paar sachen sind mir
> noch ein bissl unklar.
>  
> also zu a)
>  
> wieso ist [mm]y=2\cdot{}e^{-5x}[/mm] gleich
> [mm]y=e^{5\cdot{}lnc}\cdot{}e^{-5x}[/mm] ?

Das ist ein Trick, den man beim Integrieren von Differenzialgleichungen gerne benutzt. Die Integrationskonstanten werden beim weiteren Umformen oft in irgendwelche Funktionen eingebaut, hier z.B. [mm] e^{5\cdot{}\ln c}. [/mm] Das unpraktisch, deshalb macht man sich einfach ne neue Konstante [mm] $d=e^{5\cdot{}\ln c}$, [/mm] und damit dann [mm] $d\cdot{}e^{-5x}$. [/mm] Das macht die Formel einfacher, und erleichtert das anschließende Lösen des APWs erheblich.

Wenn man das ganze etwas besser überblickt, geht man aber auch gerne hin, und definiert das c kurzerhand neu, oder überspringt den Schritt mit dem Integrieren.

>  
> desweiteren verstehe ich folgendes nicht so recht:
>  
> ich habe hier im Binomi (schwarze Bibel) die Formel
> gefunden die gilt ja quasi nur für homogene lineare DGL.
>  
> Hier steht:
>  
> Berechnung von [mm]y_{H}[/mm]
>  
> (1) Raten einer Lösung oder
>  (2) Formel: [mm]y_{H}=c*e^{-A(x)}[/mm] (das ist ja die Formel mit
> der du auch gerechnet hast)
>  (3) Berechnung von [mm]y_1[/mm] mittels Trennung der Variablen
>  
> Stets hat [mm]y_{H}[/mm] die Form [mm]y_{H}=c*y_{1}[/mm]
>  
> also ist meine [mm]e^{-A(x)}[/mm] auch immer mein [mm]y_{1}[/mm] oder wie?
>  

Das ist richtig. [mm] y_1 [/mm] ist EINE Funktion, die die DGL löst. Allerdings lösen auch alle Vielfache der Funktion die DGL, und daher kommt da noch ein c davor. Das hast du ja auch raus, daß da eine Konstante als Faktor vor deiner e-Funktion steht.


> aso und wieso kann ich aus der Funktion dann nicht nen Wert
> mit dem gegebenem [mm]y(0)=2[/mm] berechnen? wäre das den so
> falsch?

Nun, das klingt so, als wenn du den Sinn von DGLs nicht verstanden hast. Gesucht sind zunächst Funktionen, die die DGL erfüllen, das sind hier alle einfachen e-Funktionen mit negativem Exponenten, als ne ganze Menge, die sich durch die Konstanten unterscheiden.

Beim Anfangswertproblem bestimmst du nun Zahlenwerte für die Konstanten, um eine einzige Funktion herauszubekommen.

Du setzt also die Anfangswerte ein, und bestimmst das c.

Diesen Zahlenwert setzt du dann in die vorherige Lösung der DGL ein.

Bezug
                        
Bezug
Anfangswertprobleme: Antwort
Status: (Antwort) fertig Status 
Datum: 15:33 Mi 26.09.2007
Autor: leduart

Hallo
> wieso ist [mm]y=2\cdot{}e^{-5x}[/mm] gleich
> [mm]y=e^{5\cdot{}lnc}\cdot{}e^{-5x}[/mm] ?

du hattest [mm] c=e^{1/5}*2 [/mm] daraus folgt [mm] e^{5*lnc}=e^{1/5*5*ln2}=e^{ln2}=2 [/mm]

> desweiteren verstehe ich folgendes nicht so recht:
>  
> ich habe hier im Binomi (schwarze Bibel) die Formel
> gefunden die gilt ja quasi nur für homogene lineare DGL.
>  
> Hier steht:
>  
> Berechnung von [mm]y_{H}[/mm]
>  
> (1) Raten einer Lösung oder
>  (2) Formel: [mm]y_{H}=c*e^{-A(x)}[/mm] (das ist ja die Formel mit
> der du auch gerechnet hast)
>  (3) Berechnung von [mm]y_1[/mm] mittels Trennung der Variablen
>  
> Stets hat [mm]y_{H}[/mm] die Form [mm]y_{H}=c*y_{1}[/mm]
>  
> also ist meine [mm]e^{-A(x)}[/mm] auch immer mein [mm]y_{1}[/mm] oder wie?
>  
> aso und wieso kann ich aus der Funktion dann nicht nen Wert
> mit dem gegebenem [mm]y(0)=2[/mm] berechnen? wäre das den so
> falsch?

Du suchst ne Funktion, den Wert bei x=0 kennst du ja, er ist 2. natürlich kannst du auch y(1) berechnen oder y(17) aber das ist dann eben jeweils ein Funktionswert, und nicht die Funktion selbst.

Gruss leduart

Bezug
                        
Bezug
Anfangswertprobleme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:45 Mi 26.09.2007
Autor: ragsupporter

aso dankeschön ihr beiden, das sind eben so fingerfertigkeiten die ich im Moment beim lösen von DGLs noch icht habe...but i keep on trying =)

aber noch mal eine andere Frage:

bei b) habe ich ja nun eine inhomogene DGL weil auf der rechten Seite ja 1 steht.

könnte mir mal evtl. jemand zeigen wie man das nun hier macht? weil lt. Binomi muss ich ja mit der Variation der Konstanten arbeiten...und steht jetz hier (Binomi )solche Sachen mit Wronski Determinante und so...

also jetzt versteh ich nur noch Bahnhof...also mir gehts erstmal um die Variation der Konstanten.

besten dank nochmal

lg markus

Bezug
                                
Bezug
Anfangswertprobleme: Antwort
Status: (Antwort) fertig Status 
Datum: 16:01 Mi 26.09.2007
Autor: leduart

Hallo
dies sind ja eindimensionale Dgl. drum vergiss die Wronskidet.!
1. Methode: statt Variation der konstanten eine Lösung der inhomogenen Dgl raten: hier y=const, y'=0 ergibt 5*const=1 oder y=1/5 ist eine sog. "partikuläre" Lösung der inhomogenen Dgl.
Dann hast du die allgemeine Kösung der inhomogenen Dgl. als Summe der allg. Lösg der homogenen + die Lösung der inhomogenen, also [mm] y=C*e^{-5x}+1/5 [/mm]

2. Variation der Konstanten:
statt c schreib C(x) also [mm] y=C(x)*e^{-5x} [/mm] daraus [mm] y'=C'*e^{-5x}-5C*e^{-5x} [/mm]
einsetzen in die Dgl ergibt:
[mm] C'*e^{-5x}-5C*e^{-5x}+5C*e^{-5x}=1 [/mm]
[mm] C'*e^{-5x}=1 [/mm]
[mm] C'=e^{5x} [/mm]
[mm] C=1/5*e^{5x}+A [/mm]
dann in [mm] y=C(x)*e^{-5x} [/mm] einsetzen :
[mm] y=1/5+A*e^{-5x} [/mm]  wie oben.
Durch Variation der Konstanten bekommt man IMMER ne eeinfache Gleichung für C'
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de