www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Angestellte und Arbeitsplätze
Angestellte und Arbeitsplätze < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Angestellte und Arbeitsplätze: Korrektur bzw. Hilfe
Status: (Frage) beantwortet Status 
Datum: 15:29 So 01.12.2013
Autor: rsprsp

Aufgabe
Sechs Angestellte arbeiten seit einem Jahr an sechs verschiedenen Orten. Um keine Routine aufkommen zu lassen, sollen die Angestellten nach einem Jahr ihren Arbeitsort wechseln. Hierzu wird jeden der 6 Angestellten zufällig einer der 6 Arbeitsorte zugeteilt.

a) In wie vielen Fällen erhalten alle Angestellte ihren alten Arbeitsplatz zurück?

b) In wie vielen Fällen erhält kein Angestellter seinen alten Arbeitsplatz zurück?

c) In wie vielen Fällen erhält genau ein Angestellter seinen alten Arbeitsplatz zurück?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Es git 6 Angestellte die an 6 Arbeitsorten arbeiten.
A=6 -> (1 2 3 4 5 6) , O=6 -> (1 2 3 4 5 6)
Es ist eine Permutation , d.h es gibt 6! = 720 Möglichkeiten.

a) A=1 , denn es wird immer das A genau auf das O abgebildet. D.h. die Permutation (1 2 3 4 5 6) und es ist ein eindeutiges Ergebnis.

b) Meiner Meinung nach
5C1*4C1*3C1*2C1 = 120 dafür dass die Vorkommen (z.B.2->2)
720-120 = 600

c) Man muss eine Zahl weglassen und dann noch die Zahlen die auf einander abgebildet werden z.B. 2 auf 2

Es gibt 5!=120 Möglichkeiten
Dann habe ich für das weggelassene:
4C1*3C1*2C1 = 24
Also 120-24=96 und dann glaube ich noch mal 6 für 6 Stellen
= 576 bin mir aber nicht sicher.

        
Bezug
Angestellte und Arbeitsplätze: Antwort
Status: (Antwort) fertig Status 
Datum: 16:37 So 01.12.2013
Autor: luis52

Moin rsprsp,

[willkommenmr]

Bis auf a) sind deine Berechnungen leider falsch.
Google mal "Permutation" und "Fixpunkt" oder
schau mal []hier.  

Anbei die Verteilung der Permutationen von $1,2,3,4,5,6$ mit $k=0,1,2,3,4,5,6$
Fixpunkten

1:   0   1   2   3   4   6 
2: 265 264 135  40  15   1 



Bezug
                
Bezug
Angestellte und Arbeitsplätze: Rückfrage
Status: (Frage) überfällig Status 
Datum: 17:07 So 01.12.2013
Autor: rsprsp

Ich habe http://de.wikipedia.org/wiki/Rencontres-Zahl gelesen.

zu b) Steht 265 ( wenn ich das richtig ablese). Ich kann das auch mit der Formel D6,0 nachweisen.

zu c)
Meiner Meinung nach darf ich jetzt z.B. die 1 Zahl raus lassen und die anderen 5 betrachten. Somit folgt, dass D5,0 also, dass keine der Zahlen "getroffen" werden. Somit habe ich 44 Kombinationen für (1 X X X X X) und müsste es mal 6 rechnen also 264 dafür, dass ein Angestellter seinen alten Arbeitsplatz bekommt.

Ist meine Denkensweise richtig???

Bezug
                        
Bezug
Angestellte und Arbeitsplätze: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Di 03.12.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de