www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Ankleben
Ankleben < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ankleben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:04 Sa 15.03.2008
Autor: GorkyPark

Hallo zusammen,

ich habe eine generelle Frage zu folgenden Konstrukten: Y [mm] \cup_{f} [/mm] X. (Wie heissen diese Objekte eigentlich mathematisch?)

Das ist ja eine topologische Summe modulo eine Äquivalenzrelation def. via einer stetigen Abb. f. Meine Frage ist: wie ist die Topologie darauf definiert? Was ist eine offene (bzw. abgeschlossene) Menge auf diesem Objekt?
(Mir ist schon klar, dass dies die Topologie der Summe ist, aber ich habe trotzdem Mühe, vielleicht könnte mir das jemand anschaulich erklären oder beschreiben?)

Vielen Dank

Euer GorkyPark.

        
Bezug
Ankleben: Antwort
Status: (Antwort) fertig Status 
Datum: 02:14 Mo 17.03.2008
Autor: Manatu

Hallo GorkyPark,

auch wenn deine Frage leider schon überfällig ist, will ich doch zu nächtlicher Stunde ncoh ein paar Sätze dazu schreiben:

1.) zu [mm] $X\cup_f [/mm] Y$: Dies ist, wie du in der Überschrift schon geschrieben hast, eine Verklebung entlang von $f$. Das kannst du dir auch wirklich als Verklebung vorstellen (und so heißen sie auch mathematisch: Verklebekonstruktion oder im englischen glueing-construktion). Zum Beispiel sei mal [mm] $X=D^1$ [/mm] die Kreisscheibe und [mm] $Y=S^1$ [/mm] der Kreisring und [mm]f:\partial D^1\rightarrow S^1[/mm] die bijektive Abbildung vom Rand der Kreisscheibe in den Kreisring. Dann ist zumindest Mengenmäßig die Verklebung [mm] $X\cup_f [/mm] Y$ genau wieder die Kreisscheibe.

2.) Topologisch sollte es auch wieder die Kreisscheibe sein: Die Topologie auf einer Verklebung [mm]X\cup_f Y[/mm] ist gleich der Quotientenraumtopologie, denn mehr ist es ja auch nicht. Genau, wie du gesagt hast, ist es ja die Summe (oder disjunkte Vereinigung) modulo einer Äquivalenzrelation. Die Topologie ist also die Quotiententopologie von der Summentopologie. Wie kann man das anschaulich machen? Am besten, indem du wirklich an das Verkleben denkst. Eine Menge ist dann offen, wenn alle Urbilder (von der Quotientenprojektion) selbst offen sind. Also, stell dir vor, du reißt die beiden Mengen dort, wo du sie zusammengeklebt hast, wieder auseinander und stellst bei beiden teilen wieder den Urzustand her. Dann müssen halt die entsprechenden Mengen auf diesen beiden Teilen offen sein, die zu der Menge auf dem verklebten Teil gehören.

Ich hoffe, das hat dir schonmal ein bisschen weiter geholfen.
Wenn du's noch brauchst, schlage ich gerne auch mal Beispiele aus meiner Vorlesung damals nach.

Mathematische Grüße,

Manatu

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de