www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Anordnung von Zahlen
Anordnung von Zahlen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anordnung von Zahlen: Idee
Status: (Frage) beantwortet Status 
Datum: 20:56 So 30.10.2011
Autor: Jule2

Aufgabe
Die Zahlen {1,2,3,.....,10} werden in einer beliebigen Reihenfolge im Kreis angeordnet. Zeige, dass es für jede mögliche derartige Anordnung drei aufeinanderfolgende Zahlen gibt, deren Summe mindestens 17 ist.

Also ich habe mir folgendes überlegt:

1: [mm] \summe_{1}^{10} [/mm] =55 somit hat jede Zahl den Wert 5,5(also natürlich nur im Mittel)

2: Somit hat jedes Triple im Mittel den Wert 3*5,5=16,5 was ja schonmal >16 ist

3: Es gibt 10 solcher Triple somit ist 10*16,5=165 die Summe  aller Triple

4: nehme ich nun an das im günstigsten Fall die Summe der ersten 9 Triple je 16 ergibt so ist 165-9*16=der Summe des zehnten Triple also 21!

Kann ich das so machen?? Oder gibt es da vielleicht ne besser Beweisführung??


        
Bezug
Anordnung von Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:02 So 30.10.2011
Autor: donquijote


> Die Zahlen {1,2,3,.....,10} werden in einer beliebigen
> Reihenfolge im Kreis angeordnet. Zeige, dass es für jede
> mögliche derartige Anordnung drei aufeinanderfolgende
> Zahlen gibt, deren Summe mindestens 17 ist.
>  Also ich habe mir folgendes überlegt:
>  
> 1: [mm]\summe_{1}^{10}[/mm] =55 somit hat jede Zahl den Wert
> 5,5(also natürlich nur im Mittel)
>  
> 2: Somit hat jedes Triple im Mittel den Wert 3*5,5=16,5 was
> ja schonmal >16 ist
>  
> 3: Es gibt 10 solcher Triple somit ist 10*16,5=165 die
> Summe  aller Triple
>  
> 4: nehme ich nun an das im günstigsten Fall die Summe der
> ersten 9 Triple je 16 ergibt so ist 165-9*16=der Summe des
> zehnten Triple also 21!
>  
> Kann ich das so machen?? Oder gibt es da vielleicht ne
> besser Beweisführung??
>  

Sieht gut aus, der Beweis scheint zu funktionieren.
En alternativer Beweis wäre: Nimm aus dem Kreis die 1 heraus. Es bleiben 9 hintereinander angeordnete Zahlen übrig mit der Gesamtsumme 54. Diese können in 3 Dreiergruppen unterteilt werden, von denen mindestens eine die Summe 18 haben muss.

Bezug
        
Bezug
Anordnung von Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:16 So 30.10.2011
Autor: hippias

Ich durchschaue Deinen Beweis nicht voellig (Deine Mittelwerte irritieren mich und haettest Du nicht sogar gezeigt, dass eine Tripelsumme mindestens $21$ betragen muss?), halte ihn aber fuer sehr interessant. Als Antwort auf Deine Frage, ob es auch anders geht, hier meine Vorschlag: Du hast gezeigt

> somit ist [...] 165 die
> Summe  aller Triple
>  

Nun koennen nicht alle diese 10 Tripel eine Summe [mm] $\leq [/mm] 16$ haben, denn dies ergaebe hoechstens nur $160$.


Bezug
                
Bezug
Anordnung von Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:24 So 30.10.2011
Autor: Jule2

Also mit Mittelwert ist natürlich das arithmetische Mittel gemeint, da hab ich mich vielleicht etwas ungeschickt ausgedrückt ansonsten hab ich mir halt den günstigsten fall angeschaut außer acht lassend ob dieser überhaupt möglich wäre nämlich den wo alle 9 Triple genau die Summe 16 annehmen was ja bekantlicher weise die größtmögliche natürlich Zahl kleiner 17 währe.
Für diesen speziellen Fall wäre dann die Summe 21 was ja in jedem fall größer als sechzehn ist!
Allerdings finde ich deine herangehensweise auch sehr interessant!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de