www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Ansatz Hauptvektorkette
Ansatz Hauptvektorkette < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ansatz Hauptvektorkette: Starthilfe für Berechnung
Status: (Frage) beantwortet Status 
Datum: 17:25 Mi 09.01.2013
Autor: Fonsi

Aufgabe
Gegeben ist die Matrix:

A= [mm] \pmat{ -2 & 3 & -3 \\ -5 & 6 & -5 \\ -2 & 2 & -1 } [/mm]

Bestimmen Sie eine Losungsbasis von [mm] \vec{y}'= A\vec{y} [/mm] mit Hilfe der Methode der Hauptvektoren.
Hinweis: der Ansatz (A [mm] -\lambda E)\vec{x} [/mm] = [mm] \vec{v} [/mm] (Hauptvektorkette) führt in diesem Fall nicht zur
Losung. Man sollte also zur Berechnung der Hauptvektoren die Definition anwenden.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo,
ich habe ein Problem mit dem Sachverhalt von Hauptvektoren bzw. die Vorangehensweise zur Berchnung der Lösungsbasis ohne den oben dargestellten Ansatz sondern mit der Definition(?).
Habe die Eigenwerte (1,1,1) und
Hauptvektoren [mm] \lambda1 [/mm] = [mm] \pmat{ 1 \\ 1 \\ 0 } [/mm]
und [mm] \lambda2 =\pmat{ -1 \\ 0 \\ 1 } [/mm]
der Matrix A bereits berechnet.

Wenn ich richtig liege folgt die Berechnung einer Fundamentalmatrix

[mm] \vec{y}(x)=e^{\lambda_{i}x}(\summe_{k=0}^{\infty}\bruch{x^k}{k!}(A-\lambda_{i}E)^k\vec{v}_{i} [/mm]

        
Bezug
Ansatz Hauptvektorkette: Antwort
Status: (Antwort) fertig Status 
Datum: 17:59 Mi 09.01.2013
Autor: MathePower

Hallo Fonsi,


[willkommenmr]


> Gegeben ist die Matrix:
>  
> A= [mm]\pmat{ -2 & 3 & -3 \\ -5 & 6 & -5 \\ -2 & 2 & -1 }[/mm]
>  
> Bestimmen Sie eine Losungsbasis von [mm]\vec{y}'= A\vec{y}[/mm] mit
> Hilfe der Methode der Hauptvektoren.
>  Hinweis: der Ansatz (A [mm]-\lambda E)\vec{x}[/mm] = [mm]\vec{v}[/mm]
> (Hauptvektorkette) führt in diesem Fall nicht zur
>  Losung. Man sollte also zur Berechnung der Hauptvektoren
> die Definition anwenden.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>   Hallo,
>  ich habe ein Problem mit dem Sachverhalt von Hauptvektoren
> bzw. die Vorangehensweise zur Berchnung der Lösungsbasis
> ohne den oben dargestellten Ansatz sondern mit der
> Definition(?).
>  Habe die Eigenwerte (1,1,1) und
> Hauptvektoren [mm]\lambda1[/mm] = [mm]\pmat{ 1 \\ 1 \\ 0 }[/mm]
> und [mm]\lambda2 =\pmat{ -1 \\ 0 \\ 1 }[/mm]
> der Matrix A bereits berechnet.

>


Das sind die Eigenvektoren oder Hauptvektoren der Stufe 1 der Matrix A.

Wenn Du in dem Ansatz

[mm](A -\lambda E)\vec{x} = \vec{v}[/mm]

[mm]\vec{v}[/mm] als zunächst unbekannte Linearkombination
dieser Eigenvektoren ansetzt, dann bekommst Du heraus, für
welche Linearkombination das funktioniert.


> Wenn ich richtig liege folgt die Berechnung einer
> Fundamentalmatrix
>  
> [mm]\vec{y}(x)=e^{\lambda_{i}x}(\summe_{k=0}^{\infty}\bruch{x^k}{k!}(A-\lambda_{i}E)^k\vec{v}_{i}[/mm]

>


Die Berechnung ist mir unbekannt.  


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de