www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik/Hypothesentests" - Ansatz Nullhypothese
Ansatz Nullhypothese < Statistik/Hypothesen < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ansatz Nullhypothese: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:20 Sa 23.11.2013
Autor: rubi

Aufgabe
Ein Biathlet behauptet, beim Schiessen eine Trefferquote von 95% zu erreichen. Um seiner Behauptung Nachdruck zu verleihen, gibt er 100 Schüsse ab.
Wie viele Treffer muss er erzielen, damit seine Behauptung mit einer Irrtumswahrscheinlichkeit von 5% glaubhaft ist ?

Hallo zusammen,

in der Musterlösung des Buches, aus dem die Aufgabe stammt, wird als Nullhypothese [mm] H_0: [/mm] p = 0,95 und als Alternativhypothese [mm] H_1: [/mm] p < 0,95 angegeben. (die Nullhypothese kann daher auch als p<=0,95 aufgefasst werden)
Als Ablehnungsbereich ergibt sich dann die Menge {0,...,90}.
Er muss also gemäß dieser Lösung mindestens 91 Treffer erzielen.

Würde man die Irrtumswahrscheinlichkeit auf 25% setzen, wäre der Ablehnungsbereich {0,...,93}, er müsste dann mindestens 94 Treffer erzielen.

Gemäß der Aufgabenbeschreibung müsste es doch eher so sein, dass je niedriger die Irrtumswahrscheinlichkeit ist, desto mehr Treffer müsste er erzielen, um seine Behauptung zu bestätigen.  Hier ist es nun umgekehrt.

Mir ist klar, dass die Wirkung so ist, weil eben die Alternativhypothese als p<0,95 festgelegt wurde.

Wäre es bei dieser Aufgabe nicht besser, wenn man [mm] H_0: [/mm] p<=0,95 und [mm] H_1: [/mm] p > 0,95 setzen würde ?
Das würde doch heißen, dass man der Behauptung des Biathleten von vornherein misstraut und er seine Behauptung sozusagen bestätigen muss.
Wenn ich von vornherein [mm] H_0: [/mm] p>=0,95 ansetze, ist seine Behauptung doch so lange glaubhaft, so lange man ihm nicht das Gegenteil mit einem Test unterstellen kann.
Also wer ist gemäß Aufgabenstellung in der "Beweispflicht" ?

Danke für eure Antworten !

Viele Grüße
Rubi




        
Bezug
Ansatz Nullhypothese: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:39 Mo 25.11.2013
Autor: rubi

Hallo zusammen,

da ich nicht weiß, ob meine Frage "untergegangen" ist, starte ich noch einen Versuch.

Danke für eure Antworten.

Viele Grüße
Rubi

Bezug
        
Bezug
Ansatz Nullhypothese: Antwort
Status: (Antwort) fertig Status 
Datum: 11:40 Mo 25.11.2013
Autor: Al-Chwarizmi


> Ein Biathlet behauptet, beim Schiessen eine Trefferquote
> von 95% zu erreichen. Um seiner Behauptung Nachdruck zu
> verleihen, gibt er 100 Schüsse ab.
> Wie viele Treffer muss er erzielen, damit seine Behauptung
> mit einer Irrtumswahrscheinlichkeit von 5% glaubhaft ist ?
>  Hallo zusammen,
>
> in der Musterlösung des Buches, aus dem die Aufgabe
> stammt, wird als Nullhypothese [mm]H_0:[/mm] p = 0,95 und als
> Alternativhypothese [mm]H_1:[/mm] p < 0,95 angegeben. (die
> Nullhypothese kann daher auch als p<=0,95 aufgefasst
> werden)    [haee]

Da hast du wohl eher gemeint:  [mm] H_0: [/mm]  p>=0.95  , oder ?


>  Als Ablehnungsbereich ergibt sich dann die Menge
> {0,...,90}.
> Er muss also gemäß dieser Lösung mindestens 91 Treffer
> erzielen.
>
> Würde man die Irrtumswahrscheinlichkeit auf 25% setzen,
> wäre der Ablehnungsbereich {0,...,93}, er müsste dann
> mindestens 94 Treffer erzielen.
>
> Gemäß der Aufgabenbeschreibung müsste es doch eher so
> sein, dass je niedriger die Irrtumswahrscheinlichkeit ist,
> desto mehr Treffer müsste er erzielen, um seine Behauptung
> zu bestätigen.  Hier ist es nun umgekehrt.
>
> Mir ist klar, dass die Wirkung so ist, weil eben die
> Alternativhypothese als p<0,95 festgelegt wurde.
>
> Wäre es bei dieser Aufgabe nicht besser, wenn man [mm]H_0:[/mm]
> p<=0,95 und [mm]H_1:[/mm] p > 0,95 setzen würde ?
> Das würde doch heißen, dass man der Behauptung des
> Biathleten von vornherein misstraut und er seine Behauptung
> sozusagen bestätigen muss.
> Wenn ich von vornherein [mm]H_0:[/mm] p>=0,95 ansetze, ist seine
> Behauptung doch so lange glaubhaft, so lange man ihm nicht
> das Gegenteil mit einem Test unterstellen kann.
> Also wer ist gemäß Aufgabenstellung in der
> "Beweispflicht" ?
>  
> Danke für eure Antworten !
>  
> Viele Grüße
>  Rubi


Hallo Rubi,

bei Aufgaben dieser Art kommen leider etwas frag-
würdige Formulierungen in den Aufgabenstellungen
recht oft vor. Im vorliegenden Beispiel soll aber
offenbar die Behauptung "p=0.95" als Nullhypothese
akzeptiert werden und in der Testserie dann nur
geprüft werden, ob diese (recht ehrgeizige) Hypothese
aufgrund einer zu niedrigen Trefferquote abgelehnt
werden muss.
Zentral ist, dabei den Begriff der "Irrtumswahr-
scheinlichkeit" richtig zu interpretieren. Es geht dabei
nur um einen "Irrtum" der Art, dass man dem Schützen
seine Behauptung (p=0.95) nicht glauben würde,
obwohl sie tatsächlich richtig wäre.

LG ,   Al-Chw.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de