Ansatz Wahrscheinlichkeit gesu < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:24 Fr 17.08.2012 | Autor: | Kuriger |
Aufgabe | Eine seltene Krankheit ist nach in Europa üblicher Definition eine Krankheit, die weniger als 5 von 10 000 Einwohnern haben. Wie gross ist die Wahrscheinlichkeit, dass in ... mit seinen 26177 Einwohnern zwischen 12 und 14 Einwohnern an einer bestimmten seltenen Krankheit leiden, die mit einer Häufigkeit von 5 Erkrankten pro 10 000 Einwohner auftritt? |
Hallo
Viel mehr als die Aufgabenstellung abzuschreiben fällt mir leider gerade dazu nicht ein.
Kann mir jemand auf die Sprünge helfen? welcher Ansatz?
Bernoulli Ansatz?
Gibt ja nur zwei Ausgänge, seltene Krankheit oder nicht seltene Krankheit
Wahrscheinlichkeit für seltene Krankheit p = 0.0005
n = 26177
k = 12
P(k=12, 13, 14) = [mm] \vektor{n \\ k} [/mm] * [mm] p^k [/mm] * (1 - [mm] p)^{n-k}
[/mm]
Irgendwas funktioniert nicht, ich erhalte für k = 12 , denn [mm] \vektor{26177 \\ 12} [/mm] = [mm] 2.15579^{44} [/mm] !
also
P(k=12) = [mm] \vektor{26177 \\ 12} [/mm] * [mm] 0.0005^{12} [/mm] * (1 - [mm] 0.0005)^{26177-12} [/mm] = 0.109 okay ist dann doch vernünftig..
Anmerkung:
Könnte sich vielleicht auch auf eine Poissonverteilung handeln?
Doch wie wendet man dies an? Einmal mehr, ist mir Wikipedia zu hoch...
lambda = 0.00005 * 26177 = 13.0885 Und jetzt?
Vielen Dank
|
|
|
|
Es liegt eine Bernoulli-Kette der Länge [mm]n=26177[/mm] mit Erfolgswahrscheinlichkeit [mm]p=0{,}0005[/mm] vor. Die Zufallsgröße [mm]X[/mm] der Erkrankten unter den 26177 Einwohnern ist daher binomialverteilt mit [mm]n[/mm] und [mm]p[/mm] als Parametern. Bei sehr kleiner Erfolgswahrscheinlichkeit, was hier der Fall ist, darf man die Binomialverteilung durch eine Poissonverteilung ersetzen, ohne daß sich das in den berechneten Wahrscheinlichkeiten groß auswirkt. Du darfst daher [mm]X[/mm] als Poisson-verteilt mit dem Erwartungswert [mm]\lambda = np = 13{,}0885[/mm] annehmen:
[mm]P(X=k) = \operatorname{e}^{-\lambda} \cdot \frac{\lambda^k}{k!}[/mm]
Und dann mußt du wie gehabt [mm]P(X=12)+P(X=13)+P(X=14)[/mm] oder kumuliert [mm]P(X \leq 14) - P(X \leq 11)[/mm] berechnen. Du kannst ja einmal beides tun: binomial oder Poisson rechnen. Du wirst kaum einen Unterschied in den Werten feststellen. Höchstens könnte es numerische Fallen geben ...
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:35 Sa 18.08.2012 | Autor: | Kuriger |
Danke für die hilfreichen Erklärungen
Gruss Kuriger
|
|
|
|