www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Anwendung des Mittelwertsatzes
Anwendung des Mittelwertsatzes < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anwendung des Mittelwertsatzes: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:19 Fr 23.01.2009
Autor: clay

Hallo!
Ich habe bei einer Aufgabe eine Funktion [mm] f(\alpha) [/mm] = [mm] \bruch{l * sin(\alpha}{d} [/mm] auf dem Intervall [0, [mm] \bruch{\pi}{2}]. [/mm] Ich weiß, dass meine Funktion als Zufallsvariable (darf ich das so sagen?) gleichverteilt ist und habe daher die Wahrscheinlichkeit
[mm] p=\bruch{\integral^{\bruch{\pi}{2}}_{0} {l\cdot sin(\alpha) d\alpha}}{d * \bruch{\pi}{2}} [/mm] = [mm] \bruch{2l}{\pi d} [/mm]
ausgerechnet, indem ich die Fläche unter der Funktion durch die gesamte Fläche dividiere (die Höhe des Intervalls ist d). Nun habe ich festgestellt, dass diese Wahrscheinlichkeit gleich dem Mittelwert der Funktion ist:
[mm] p=m=\bruch{1}{b-a} \integral^{b}_{a} {f(\alpha) d\alpha} =\bruch{1}{\bruch{\pi}{2}} * \integral^{\bruch{\pi}{2}}_{0} {\bruch{l*sin(\alpha)}{d} d\alpha}=\bruch{2l}{\pi d}. [/mm]
(Zwischenschritte bei der Berechnung von p und m habe ich erstmal weggelassen, ich hoffe das sieht man auch so)

Und jetzt suche ich eine Begründung warum das so ist.
Ich weiß, dass mir dort wohl der Mittelwertsatz weiterhelfen kann:
Seien a < b, und die Funktion f:[a,b] [mm] \to \IR [/mm] sei stetig und definiert auf dem Intervall [a,b]. Es existiert ein c [mm] \in [/mm] [a,b] mit:
[mm] \bruch{f(b)-f(a)}{(b-a)}=f'(c) [/mm]

Wenn ich die Gleichung so stehen habe, sieht es ja schon so aus, als ob es mir helfen könnte. Ich würde sagen, es gilt:  [mm] p=\bruch{f(b)-f(a)}{(b-a)}=f'(c) [/mm] =m.
Aber stimmt das? Ich habe mir das so ein bißchen aus der Zeichnung überlegt. Verstehe aber noch nicht ganz warum der Mittelwert dann gleich der Steigung an einem Punkt ist- also wie man sich das so vorstellen kann (ich schätze ich habe da gerade irgendeine Grundlage nicht verstanden). Und die Wahrscheinlichkeit ist p = [mm] \bruch{f(b)-f(a)}{(b-a)} [/mm] kommt mir wegen der Gleichverteilung schlüssig vor, aber auch hier kann ich mir das nicht so richtig bildlich vorstellen...

Ich würde mich freuen wenn mir jemand helfen kann!
Viele Grüße
clay

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Anwendung des Mittelwertsatzes: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Mi 28.01.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de