www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Anzahl Körper
Anzahl Körper < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anzahl Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:12 Sa 22.01.2011
Autor: bezauberndejeany

Aufgabe
Wieviele endliche Körper mit höchstens 20 Elementen gibt es?

Anzahl der Elemente ist Primzahlpotenz, also [mm] $20\geq p^{n}.$ [/mm]
Das heißt also die möglichen Anzahlen der Elemente sind [mm] $A=\{ 2,4,8,16,3,9,5,7,11,13 \}$. [/mm]
Wenn ich in [mm] $(\IZ [/mm] / p [mm] \IZ [/mm] )$ bin, dann hat der Körper $p$ Elemente, nämlich $0,1,...,p-1$, was ja heißen würde, dass nur die Primzahlen aus $A$ in Frage kommen?
Weiter komme ich leider nicht :(
Kann mir bitte jemand helfen?

        
Bezug
Anzahl Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 17:23 Sa 22.01.2011
Autor: Lippel

Hallo,

> Wieviele endliche Körper mit höchstens 20 Elementen gibt
> es?
>  Anzahl der Elemente ist Primzahlpotenz, also [mm]20\geq p^{n}.[/mm]
>  
> Das heißt also die möglichen Anzahlen der Elemente sind
> [mm]A=\{ 2,4,8,16,3,9,5,7,11,13 \}[/mm].

Genau, die Anzahl der Elemente eines Körpers ist immer eine Primzahlpotenz. Zudem gibt es (bis auf Isomorphie) zu jeder Anzahl jeweils nur einen Körper. Wenn du deine Liste der Primzahlen und Primzahlpotenzen [mm] $\leq [/mm] 20$ noch vervollständigst (es fehlen 2 Elemente), dann brauchst du die Elemente nur noch abzählen und erhälst so die Anzahl der Körper.

>  Wenn ich in [mm](\IZ / p \IZ )[/mm]
> bin, dann hat der Körper [mm]p[/mm] Elemente, nämlich [mm]0,1,...,p-1[/mm],
> was ja heißen würde, dass nur die Primzahlen aus [mm]A[/mm] in
> Frage kommen?

Nein, denn nicht alle endlichen Körper sind von der Form [mm] $\IZ/p\IZ$. [/mm] Der Körper mit vier Elementen ist nicht [mm] $\IZ/4\IZ$, [/mm] er existiert jedoch trotzdem. Um die Anzahl zu bestimmen reicht die Argumentation über die Primzahlpotenzen völlig, du musst gar nicht mehr weiter argumentieren.

>  Weiter komme ich leider nicht :(
>  Kann mir bitte jemand helfen?

LG Lippel


Bezug
                
Bezug
Anzahl Körper: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:39 Sa 22.01.2011
Autor: bezauberndejeany

Vielen Dank!
Klar, es fehlten die 17 und die 19: $ [mm] A=\{ 2,4,8,16,3,9,5,7,11,13,17,19 \} [/mm] $

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de