www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Anzahl Möglichkeiten
Anzahl Möglichkeiten < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anzahl Möglichkeiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:39 So 06.01.2008
Autor: barsch

Aufgabe
Wir haben die Buchstaben A,A,A,B,B,C,C,D zu Verfügung. Wie viele verschiedene Worte, die keinen Sinn ergeben müssen, lassen sich aus den Buchstaben bilden, wenn jeder Buchstabe benutzt werden muss.

Hi,

an dieser Aufgabe hänge ich momentan fest. Die Lösung soll

[mm] \vektor{8 \\ 3}*\vektor{5 \\ 2}*\vektor{3 \\ 2}*1 [/mm] sein.

Aber ich verstehe es nicht. [keineahnung]

Ich dachte erst, es sei [mm] 8!(=8\cdot{}7*6*5*4*3*2*1). [/mm] Dann ist mir aber aufgefallen, dass ich mit 8! viele Worte mehrfach habe.

Kann mir vielleicht jemand erklären, wie man auf die Lösung kommt?

MfG barsch

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Anzahl Möglichkeiten: Antwort
Status: (Antwort) fertig Status 
Datum: 16:10 So 06.01.2008
Autor: epikur57

Hallo

also du hast AAABBCCD wie mir war. Warum die Lösung [mm] \vektor{8 \\ 3}\vektor{5 \\ 2}\vektor{3 \\ 2} \vektor{1 \\ 1} [/mm] richtig ist sieht man wiefolgt:

Betrachtet man am Anfang nur die A's und hält aber die Reihenfolge der anderen (also BBCCD) fest. kann man die A's [mm] \vektor{8 \\ 3}-mal [/mm] verschieden anordnen. z.b. ABBACCAD, ABABACCD, BBCCAAAD, etc.. Nun ist aber die Reihenfolge BBCCD auch nur eine von vielen Möglichkeiten. Also betrachte ich nun wie die B's und halte noch die Reihenfolge von CCD fest. Dann merke ich schnell, dass es [mm] \vektor{5 \\ 2} [/mm] Möglichkeiten gibt. Also wenn ich die Reihenfolge der A's und B's frei wählen kann, aber die Reihenfolge CCD noch fest halte, gibt es [mm] \vektor{8 \\ 3}\vektor{5 \\ 2} [/mm] Möglichkeiten. z.B. AAABDBDC, ABABADDC, BBAADDCA, etc. Jedoch ist die Reihenfolge CCD auch nicht fix. Also muss ich die noch betrachten. gleich wie oben bekommt man schliesslich [mm] \vektor{3 \\ 2}. [/mm] und schlussendlich für D noch [mm] \vektor{1 \\ 1}=1. [/mm]

Also Zusatz ist es vielleicht nicht offensichtlich, wieso dass es z.B. für die A's genau [mm] \vektor{8 \\ 3} [/mm] Möglichkeiten gibt, wenn die anderen fünf Glieder BBCCD fix bleiben.
Stellt man sich nun 8 freie in einer Reihe stehenden Behälter vor, wo man die A's hineintun kann. dann hat man beim ersten A 8 freie Behälter zur Auswahl, beim 2ten 7 und beim 3ten noch 6. Also 8 [mm] \cdot [/mm] 7 [mm] \cdot [/mm] 6 Möglichkeiten. Nun kommt aber hinzu, dass da A's untereinander nicht austausch bar sind, da Sie nicht unterscheidbar sind. also muss man diese noch durch 3 [mm] \cdot [/mm] 2 [mm] \cdot [/mm] 1 teilen. Denn die Anzahl Kombinationen, wie man sie untereinander tauschen kann sind genau 3 [mm] \cdot [/mm] 2 [mm] \cdot [/mm] 1. und nun die Rechnung:

[mm] \bruch{8 \cdot 7 \cdot 6}{ 3 \cdot 2 \cdot 1} [/mm] =  [mm] \bruch{8!}{3!5!}=\vektor{8 \\ 3} [/mm]

Bezug
                
Bezug
Anzahl Möglichkeiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:19 So 06.01.2008
Autor: barsch

Hi,

vielen Dank [ok]. Jetzt ist mir einiges klarer geworden.

Wenn ich A,A,A,B,B,C,C,D habe, hätte ich auch sagen können:

[mm] \vektor{8 \\ 2}\vektor{6 \\ 2}\vektor{4 \\ 1} \vektor{3 \\ 3}, [/mm]

wenn ich zuerst alle Möglichkeiten für C, dann für B, D und schließlich für A berücksichtigt hätte.

[lichtaufgegangen]

MfG barsch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de