www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - Anzahl Möglichkeiten
Anzahl Möglichkeiten < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anzahl Möglichkeiten: Aufgabe und Lösung
Status: (Frage) beantwortet Status 
Datum: 17:49 Mi 23.02.2011
Autor: bluepeople12

Aufgabe
Nach einem Landgang torkeln n betrunkene Seemänner zurück auf ihr Schiff und jeder wirft sich in die nächstbeste freie Koje. Wie viele Möglichkeiten gibt es, dass kein Seemann in seiner eigenen Koje zu liegen kommt?

Heyho,

bin neu hier, also köpft mich bitte nicht gleich :).

Ich hab mir das jetzt mal so überlegt. Wir haben n betrunkene Seemänner und jeder hat seine eigene Koje.

Es gibt n! Möglichkeiten, die Seemänner auf die Kojen zu verteilen (der erste hat n Kojen zur Verfügung, der zweite n-1, der dritte n-2 usw.). Hierbei ist es egal, ob das ihre ist oder nicht.

Nun, wie viele Möglichkeiten gibt es, dass alle ihre Koje erreicht haben?: 1.

Wie viele Möglichkeiten gibt es, dass nur einer seine Koje nicht erreicht hat: n.

Wie viele Möglichkeiten gibt es, dass 2 ihre Koje nicht erreicht haben?: [mm] \vektor{n \\ 2} [/mm]

Wie viele Möglichkeiten gibt es, dass 3 ihre Koje nicht erreicht haben?: [mm] \vektor{n \\ 3} [/mm]

usw.

Also hab ich die Formel für die Anzahl der der Möglichkeiten, wie kein Seemann in seiner eigenen Koje liegt:

a = n! - [mm] [\vektor{n \\ 0} [/mm] + [mm] \vektor{n \\1 } [/mm] + [mm] \vektor{n \\ 2} [/mm] + ... + [mm] \vektor{n \\ n}] [/mm]

Die rechteckige Klammer hab ich wegen der Übersicht willen hingetan, da kommen nat. zwei runde Klammern hin.

Was meint ihr dazu?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Anzahl Möglichkeiten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:56 Mi 23.02.2011
Autor: Teufel

Hi und willkommen hier!

Leider ist das Problem ein bisschen schwieriger zu lösen. Denn z.b. kann der Fall, dass genau ein Seemann nicht seine Koje findet, nicht eintreten, denn wenn einer in der falschen Koje landet, so muss ja mindestens ein weiterer Seemann auch in falschen liegen.

Versuche es mal mit dem Einschluss-Ausschluss-Prinzip/Siebformel!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de