www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Anzahl Möglichkeiten berechnen
Anzahl Möglichkeiten berechnen < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anzahl Möglichkeiten berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:22 Mi 08.07.2009
Autor: Marius6d

Aufgabe
Ein gewöhnlicher (idealer) Spielwürfel wird dreimal geworfen. Die dabei erhaltenen
Augenzahlen a, b und c seien die Masszahlen der Kantenlängen eines Quaders.
(a) Wie gross ist die Wahrscheinlichkeit, dass der Quader ein Würfel ist ?
(b) Wie gross ist die Wahrscheinlichkeit, dass der Rauminhalt des Quaders
mindestens 140 beträgt ?
(c) Wie gross ist die Wahrscheinlichkeit, dass die Masszahl der Länge einer
Raumdiagonale des Quaders eine ganze Zahl ist ?

Also Aufgabe a und b habe ich ohne Probleme gelöst. C habe ich auch gelöst aber hier habe ich eine Frage:

Also um die Wahrscheinlichkeit zu berechnen, dass eine Diagonale eine ganze Zahl ist muss man ja die Formel für die Diagonale in einem Quader anwenden: [mm] d=\wurzel{a^2+b^2+c^2} [/mm]

Die Diagonale ist nur bei bestimmten Zahlenkombinationen ganzzahlig.

Ich bin auf folgende Lösungen gekommen, Die Diagonale ist nur eine ganze Zahl wenn folgende Kombination für a,b,c zutreffen:

1,2,2 oder 2,1,2 oder 2,2,1

Also 3 Möglichkeiten, die Wahrscheinlichkeit beträgt also, [mm] (\bruch{1}{6}^3)*3 [/mm] = [mm] \bruch{1}{72} [/mm]

So, doch ich frage mich wie man einfach auf diese 3 Möglichkeiten kommt, ich habe mir einfach Zeitgenommen und alle Möglichen Ergebnisse ausprobiert (natürlich nicht alle, denn 231 ergibt ja das selbe wie 132 etc.)

Hier gibt es aber sicher eine Möglichkeit mit Kombinatorik nehme ich an oder?!

        
Bezug
Anzahl Möglichkeiten berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:53 Mi 08.07.2009
Autor: ms2008de

Hallo,
sag mal ob in der Aufgabenstellung vorausgesetzt ist, dass a, b und c als Maßzahlen paarweise verschieden sind...?

Viele Grüße

Bezug
                
Bezug
Anzahl Möglichkeiten berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:45 Mi 08.07.2009
Autor: Marius6d

Sorry, aber die Aufgabenstellung steht ja in meinem ersten Artikel?!

Bezug
        
Bezug
Anzahl Möglichkeiten berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:30 Mi 08.07.2009
Autor: rabilein1

]
>  
> Die Diagonale ist nur bei bestimmten Zahlenkombinationen
> ganzzahlig.

RICHTIG.  

>
> Ich bin auf folgende Lösungen gekommen, Die Diagonale ist
> nur eine ganze Zahl wenn folgende Kombination für a,b,c
> zutreffen:
>  
> 1,2,2 oder 2,1,2 oder 2,2,1

DAS IST NUR EINE TEILLÖSUNG.
Was ist mit 2,4,4  oder  3,6,6 ???


> Ich habe mir einfach Zeit genommen und
> alle Möglichen Ergebnisse ausprobiert

Scheinbar doch nicht alle ... (siehe oben)  


Bezug
                
Bezug
Anzahl Möglichkeiten berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:03 Do 09.07.2009
Autor: Marius6d

Danke, die hab ich ganz vergessen dazu kommen noch folgende 6:

236,263,326,362,632,623

also ingesamt 15 Kombinationen sind's dann, aber wie kommt man auf alle Kombinationen ohne alle möglichen auszuprobieren? gibts da überhaupt was?

Bezug
                        
Bezug
Anzahl Möglichkeiten berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:04 Do 09.07.2009
Autor: rabilein1


> wie kommt man auf alle Kombinationen
> ohne alle möglichen auszuprobieren?
> Gibts da überhaupt was?

Generell kommt man wohl ums Auszuprobieren nicht herum, weil es sich um eine abzählbare (endliche) Menge an Kombinationsmöglichkeiten handelt.

Nachdem du jedoch [mm] 1^{2}+2^{2}+2^{2}=3^{2} [/mm] wusstest, konntest du als nächstes die Kantenlänge des Würfels verdoppeln bzw. verdreifachen. Dann verdoppelt bzw. verdreifacht sich auch die Länge der Raumdiagonalen.


Bezug
                                
Bezug
Anzahl Möglichkeiten berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Do 09.07.2009
Autor: Marius6d

Hmm, ok dann muss man wohl solche "Tricks" wie deinen Vorschlag anwenden. Vielen Dank, hat sich damit erledigt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de