www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Anzahl Versuche
Anzahl Versuche < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anzahl Versuche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:48 Di 10.01.2012
Autor: hase-hh

Aufgabe
60% der 12-19-Jährigen besitzen einen Farbfernseher. Für eine Umfrage werden mindestens 800 Jugendliche benötigt, die einen Farbfernseher besitzen.

Wie viele Jugendliche muss man befragen, wenn man mit mindestens 90% Sicherheit darunter mindestens 800 jugendliche Farbfernsehbesitzer haben möchte?

Hallo,

hmm - hier bräuchte ich den Ansatz.

Also, die Trefferwahrscheinlichkeit beträgt p = 0,6.

n ist gesucht.

Meine Idee:

Es geht hier um einen linksseitigen Test.

[ [mm] \mu [/mm] - [mm] 1,28*\sigma [/mm] ; n]  

[mm] \mu [/mm] = 0,6*n

[mm] \sigma [/mm] = [mm] \wurzel{0,6*n*0,4} [/mm]

d.h.  0,6n - [mm] 1,28*\wurzel{2,4*n} [/mm] > 800


=>  [mm] -1,28*\wurzel{2,4*n} [/mm] > 800 -0,6n

Quadrieren usw...


Oder gibt es einen anderen (einfacheren) Ansatz?
Normalverteilung?  oder???


Danke & Gruß


















        
Bezug
Anzahl Versuche: Antwort
Status: (Antwort) fertig Status 
Datum: 01:22 Mi 11.01.2012
Autor: Walde

Hi hase-hh,

ich hätte jetzt zwar nicht Test dazu gesagt, sondern den Ansatz

X:Anz. mit Fernseher von (n Befragten)
n=gesucht
p=0,6

[mm] P(X\ge 800)\ge [/mm] 0,9 gemacht und komme dann mit der Nährung über die Normalverteilung genau zu dem was du auch hast, d.h. [mm] P(\bruch{X-\mu}{\sigma}\ge\bruch{800-\mu}{\sigma})\ge [/mm] 0,9. Quantil nachkucken usw.

Ich weiß jetzt nur grad nicht, ob man erst zu [mm] P(X\le 799)\le [/mm] 0,1 umformen und dann erst von der Binomialverteilung zur Stdnormalvert. übergehen sollte. Bin mir grad nicht sicher, was die genauere Methode ist, bzw ob es am Ende überhaupt was aus macht, weil man n ja eh aufrunden muß am Schluß.

LG walde

Bezug
                
Bezug
Anzahl Versuche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:33 Mi 11.01.2012
Autor: hase-hh

Moin,

ich habe mal beide Ansätze durchgerechnet.

I.  0,6*n - [mm] 1,28*\wurzel{2,4*n} [/mm] > 800

- [mm] 1,28*\wurzel{2,4*n} [/mm] > 800 -0,6*n      Quadrieren

1,6384*2,4*n > 640.000 - 960*n [mm] +0,36n^2 [/mm]

0 > [mm] 0,36*n^2 [/mm] -963,93216*n + 640.000


[mm] n_1 [/mm] = 1217,99  [mm] \approx [/mm] 1218

[mm] n_2 [/mm] = 1459,59  [mm] \approx [/mm] 1459

n muss also im Intervall [1218; 1459] liegen.

D.h. man muss mindestens 1218 Jugendliche befragen.


II.  P(X>800) [mm] \ge [/mm] 0,9

1 - P(X [mm] \le [/mm] 800) [mm] \le [/mm] 0,1

0,9 [mm] \le [/mm] P(X [mm] \le [/mm] 800)

d.h. inkl. Stetigkeitskorrektur

[mm] \phi (\bruch{800+0,5 -0,6*n}{\wurzel{2,4*n}}) \ge [/mm] 0,9


Da [mm] \phi [/mm] (1,28) [mm] \approx [/mm] 0,9  ist  =>

[mm] \bruch{800+0,5 -0,6*n}{\wurzel{2,4*n}} [/mm] = 1,28

800,5 -0,6*n = [mm] 1,28*\wurzel{2,4*n} [/mm]                 Quadrieren

640.800,25 - 960,6*n [mm] +0,36*n^2 [/mm] = 1,6384*2,4*n

640.800,25 - 960,6*n [mm] +0,36*n^2 [/mm] = 3,93216*n

[mm] 0,36*n^2 [/mm] -964,53216*n + 640.000,25 = 0

[mm] n_1 [/mm] = 1217,07  [mm] \approx [/mm] 1218

[mm] n_2 [/mm] = 1462,53  [mm] \approx [/mm] 1462

n muss also im Intervall [1218;1462] liegen.

D.h. man muss mindestens 1218 Jugendliche befragen.










Bezug
                        
Bezug
Anzahl Versuche: Antwort
Status: (Antwort) fertig Status 
Datum: 11:56 Mi 11.01.2012
Autor: Blech

Hi,


wie kommst Du bei Deinem urspr. Test auf

[mm] $\mu [/mm] - [mm] 1.28\sigma?$ [/mm]

Ich nehm mal an, Ihr habt nen Gaußtest konstruiert und damit hast Du da die gleiche Normalapproximation wie in der 2. Rechnung, also kommt auch das gleiche raus.

> I.  0,6*n - $ [mm] 1,28\cdot{}\wurzel{2,4\cdot{}n} [/mm] $ > 800

wieso 2.4?

> D.h. man muss mindestens 1218 Jugendliche befragen.

bei 1218 Befragungen erwarten wir
1218*0.6 = 730.8
Fernseher.

Damit ist selbst der Erwartungswert unter 800, von 90%iger Sicherheit ganz zu schweigen.

Immer die einfachen Plausibilitätstests machen:

Ergibt mein Ergebnis Sinn?

Antwort hier: Nein.

Folgerung: Ich hab nen Fehler (nämlich: 0.6*0.4 kann nicht >1 sein. Schon gar nicht 2.4) =)


> II.  P(X>800) $ [mm] \ge [/mm] $ 0,9

> 1 - P(X $ [mm] \le [/mm] $ 800) $ [mm] \le [/mm] $ 0,1

> 0,9 $ [mm] \le [/mm] $ P(X $ [mm] \le [/mm] $ 800)

Hier hast Du in 2 Zeilen aus
[mm] $P(X>800)\geq [/mm] 0.9$
[mm] $P(X\leq [/mm] 800) [mm] \geq [/mm] 0.9$

gemacht... =)


Also:

Die [mm] $X_n$ [/mm] sind binomialverteilt mit Erfolgswkeiten 0.6 und n Wiederholungen.

Gesucht ist n, so daß
[mm] $P(X_n\geq 800)\geq [/mm] 0.9$
(mindestens 800, nicht mehr als 800)

[mm] $P(X_n \leq [/mm] 799) [mm] \leq [/mm] 0.1$

Jetzt Normalapproximation oder Computer:


1: > n=1371
2: > pnorm(799.5, mean=0.6*n, sd=sqrt(0.24*n))
3: [1] 0.1014262
4: > n=1372
5: > pnorm(799.5, mean=0.6*n, sd=sqrt(0.24*n))
6: [1] 0.09576478
7:
8:
9: > pbinom(799, 1371, 0.6)
10: [1] 0.1016182
11: > pbinom(799, 1372, 0.6)
12: [1] 0.09597357


d.h. mindestens 1372 Befragungen (und die Normalapproximation ist auf 2 Promille genau)


ciao
Stefan


Bezug
                                
Bezug
Anzahl Versuche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:57 Mi 11.01.2012
Autor: hase-hh

Moin Stefan,

vielen Dank für deine Hinweise!

zu I.

Ich kann nachvollziehen, dass 0,6*0,4 =0,24 ist.  

Die [mm] 1,28-\sigma-Umgebung [/mm] liefert ja das 80%-Konfidenzintervall bei zweiseitigen Tests, hier habe ich einen einseitigen Test, daher wird eine Hälfte des Ablehnungsbereiches (zweiseitige Betrachtung) zum Annahmebereich des einseitigen Tests hinzugerechnet. Damit bekomme ich das 90%-Konfidenzintervall.

Rechnung

0,6*n [mm] -1,28*\wurzel{0,24*n} \ge [/mm] 800

[mm] -1,28*\wurzel{0,24*n} \ge [/mm] 800 -0,6*n       Quadrieren

0,393216*n [mm] \ge [/mm] 640.000 -960*n [mm] +0,36*n^2 [/mm]


[mm] n^2 [/mm] -2667,76*n +1.777.777,78 [mm] \le [/mm] 0


[mm] n_1 [/mm] = 1333,88 - 38,18  [mm] \approx [/mm] 1296

[mm] n_2 [/mm] = 1333,88 + 38,18  [mm] \approx [/mm] 1372

D.h. mit 90% Sicherheitswahrscheinlichkeit muss ich mindestens 1296 Jugendliche befragen.



II.  P(X [mm] \ge [/mm] 800) [mm] \ge [/mm] 0,9

1 - P(X < 800) [mm] \ge [/mm] 0,9

P(X [mm] \le [/mm] 799)  [mm] \le [/mm] 0,1

[mm] \phi (\bruch{799+0,5 -0,6*n}{\wurzel{0,24*n}}) \le [/mm] 0,1


NV

1 - [mm] \phi [/mm] (1,28) = 0,1

[mm] \phi [/mm] (-1,28) = 0,1


-1,28 = [mm] \bruch{799,5 -0,6*n}{\wurzel{0,24*n}} [/mm]

0 = [mm] n^2 [/mm] -2666,09*n + 1.775.556,25

[mm] n_1 [/mm] = 1294,94  [mm] \approx [/mm] 1295

[mm] n_2 [/mm] = 1371,11  [mm] \approx [/mm] 1371


ciao
wolfgang






















Bezug
                                        
Bezug
Anzahl Versuche: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 Mi 11.01.2012
Autor: Blech


> Die $ [mm] 1,28-\sigma-Umgebung [/mm] $ liefert ja das 80%-Konfidenzintervall bei zweiseitigen Tests,

Die Frage ist ja bei welchen Tests.
[mm] $1.28\sigma$ [/mm] gilt nur, wenn wir hier schon Normalverteilung annehmen.


> D.h. mit 90% Sicherheitswahrscheinlichkeit muss ich mindestens 1296 Jugendliche befragen.

Hast Du auch nur ein Wort von dem gelesen, was ich geschrieben habe?

1296*0.6 = ???

Wie zum Henker soll da der Wert die Grenze zum 90% Niveau sein?


> $ [mm] n_2 [/mm] $ = 1371,11  $ [mm] \approx [/mm] $ 1371

Die saubere Schlußfolgerung ist [mm] $n_2 [/mm] > 1371$ [mm] $\Rightarrow$ [/mm] 1372 werden benötigt.


ciao
Stefan

Bezug
                                                
Bezug
Anzahl Versuche: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:50 Mi 11.01.2012
Autor: hase-hh


> > Die [mm]1,28-\sigma-Umgebung[/mm] liefert ja das
> 80%-Konfidenzintervall bei zweiseitigen Tests,
>  
> Die Frage ist ja bei welchen Tests.
>  [mm]1.28\sigma[/mm] gilt nur, wenn wir hier schon Normalverteilung
> annehmen.
>  
>
> > D.h. mit 90% Sicherheitswahrscheinlichkeit muss ich
> mindestens 1296 Jugendliche befragen.
>
> Hast Du auch nur ein Wort von dem gelesen, was ich
> geschrieben habe?

Es wäre schön, wenn du solche unverschämten Bemerkungen unterlassen könntest. Meine ganze Antwort bezieht sich auf das, was du geschrieben hast.

Beide von mir angewandten Verfahren liefern das gleiche Konfidenzintervall!!

Und warum soll ich das denn nicht nehmen können?  

> 1296*0.6 = ???
>  
> Wie zum Henker soll da der Wert die Grenze zum 90% Niveau
> sein?

  
Warum soll ich das Konfidenzintervall nicht so konstruieren können???
Nur weil es etwas unterhalb des Erwartungswertes liegt? Für mich keine hinreichende Erklärung!

Ich will ja nur zu 90% sicher gehen, dass ich mindestens 800 Jugendliche mit Fernseher erwische.

> > [mm]n_2[/mm] = 1371,11  [mm]\approx[/mm] 1371
>
> Die saubere Schlußfolgerung ist [mm]n_2 > 1371[/mm] [mm]\Rightarrow[/mm]
> 1372 werden benötigt.

Das mag ja sein, erschliesst sich mir aber immer noch nicht.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de