www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Anzahl binärer Operationen
Anzahl binärer Operationen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anzahl binärer Operationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:17 So 28.10.2007
Autor: eXile

Aufgabe
Eine binäre Operation auf eine Menge [mm]S[/mm] ist eine Abbildung
[mm]\begin{aligned} S \times S & \xrightarrow{ \ast }S \\ (a,b) & \mapsto a \ast b \\ \end{aligned} [/mm]

Sei [mm]S = \{ a,b,c\}[/mm] Wieviele verschiedene binäre Operationen gibt es auf S? Wieviele davon sind kommutativ, wieviele assoziativ?  

Hi,

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe leider wirklich keine Ahnung, wie man an diese Aufgabe herangeht. Ist mit der Aufgabenstellung gefragt, wieviele Kombinationen es für eine binäre Operation auf S gibt? Dann wäre die Antwort neun, jedoch macht diese Antwort (denke ich) bzgl. der zweiten Frage keinen Sinn. Ich hoffe ihr könnt mir das erklären.

[Aus dem Lineare Algebraforum hier hergeschoben]

Mit freundlichen Grüßen,
eXile.

        
Bezug
Anzahl binärer Operationen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:05 Di 30.10.2007
Autor: Somebody


> Eine binäre Operation auf eine Menge [mm]S[/mm] ist eine Abbildung
> [mm]\begin{aligned} S \times S & \xrightarrow{ \ast }S \\ (a,b) & \mapsto a \ast b \\ \end{aligned}[/mm]
>  
> Sei [mm]S = \{ a,b,c\}[/mm] Wieviele verschiedene binäre Operationen
> gibt es auf S? Wieviele davon sind kommutativ, wieviele
> assoziativ?
> Hi,
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Ich habe leider wirklich keine Ahnung, wie man an diese
> Aufgabe herangeht. Ist mit der Aufgabenstellung gefragt,
> wieviele Kombinationen es für eine binäre Operation auf S
> gibt?

Was meinst Du mit "Kombinationen für eine binäre Operation"? Es gibt [mm] $|S\times S|=|S|\cdot |S|=|S|^2=3^2=9$ [/mm] verschiedene Argumentpaare für eine binäre Operation auf $S$. Aber die binäre Operation ist ja dadurch noch entschieden nicht festgelegt: sie ordnet ja jedem solchen Paar genau ein Element von $S$ zu. Also ist die gesuchte Gesamtzahl aller binären Operationen auf $S$ gleich:

[mm] [center]$|S^{S\times S}=|S|^{|S\times S|}=|S|^{(|S|^2)}=3^{(3^2)}=3^9$[/center] [/mm]

> Dann wäre die Antwort neun, jedoch macht diese
> Antwort (denke ich) bzgl. der zweiten Frage keinen Sinn.
> Ich hoffe ihr könnt mir das erklären.

Nun musst Du versuchen, in analoger Weise die kommutativen binären Operationen zu zählen. Dazu musst Du Dir klarmachen, dass eine kommutative binäre Operation bereits durch ihre Werte für nur [mm] $\frac{|S|\cdot(|S|+1)}{2}$ [/mm] (statt für alle [mm] $|S|^2$) [/mm] Argumentpaare festgelegt ist. Deshalb gibt es nur

[mm] [center]$|S|^{\frac{|S|\cdot(|S|+1)}{2}}=3^{\frac{3\cdot 4}{2}}=3^6$[/center] [/mm]
verschiedene kommutative binäre Operationen auf $S$.

Nun musst Du noch überlegen, wie sich die Assoziativität einer binären Operation auf $S$ auf diese Art von Zählung auswirkt...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de