www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Anzahl der Paarungen
Anzahl der Paarungen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anzahl der Paarungen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:30 Mo 05.11.2012
Autor: missjanine

Aufgabe
Eine gerade Anzahl an Mannschaften (2n Mannschaften, wobei n=natürliche Zahl), tritt in einem Turnier an, wobei am ersten Tag jede Mannschaft genau ein Spiel bestreiten soll.
Wie viele Paarungen sind für diese erste Runde möglich? Bzw. wieviele Möglichkeiten gibt es, die Mannschaften in Paare einzuteilen?
Bsp. Bei 4 Mannschaften, 3 Paarungen für den 1. Spieltag:
1. Paarung (a,b), (c,d)
2. Paarung (a,c), (b,d)
3. Paarung (a,d), (b,c)

Irgendwie versteh ich nicht, wie sich die Paarungen der Mannschaften ergeben. Ich wollte die Anzahl der Paarungen für sechs und 8 Mannschaften bzw. 2 Mannschaften herausfinden, nur irgendwie steh ich auf dem Schlauch!?

        
Bezug
Anzahl der Paarungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:04 Di 06.11.2012
Autor: missjanine

Wenn ichs jetzt richtig hab, dann gibts bei 2 Mannschaften 1 Paarung, bei 6 Mannschaften 5 Paarungen und bei 8 Mannschaften 7 Paarungen.
Sprich die Rekursion lautet an=an-1+2, wobei a1=1
Und die Explizite: an=2n-1

Wenn die Aufgabe lautet "finden Sie eine rekursive Beschreibung und eine geschlossene Formel", muss man dann eine vollständige Induktion durchführen? Oder reicht das Angeben einer rekursiven und expliziten Beschreibung?

Bezug
                
Bezug
Anzahl der Paarungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:11 Di 06.11.2012
Autor: reverend

Hallo,

> Wenn ichs jetzt richtig hab, dann gibts bei 2 Mannschaften
> 1 Paarung, bei 6 Mannschaften 5 Paarungen und bei 8
> Mannschaften 7 Paarungen.
>  Sprich die Rekursion lautet an=an-1+2, wobei a1=1
>  Und die Explizite: an=2n-1

Das stimmt leider alles nicht.

> Wenn die Aufgabe lautet "finden Sie eine rekursive
> Beschreibung und eine geschlossene Formel", muss man dann
> eine vollständige Induktion durchführen? Oder reicht das
> Angeben einer rekursiven und expliziten Beschreibung?

Du musst schon noch zeigen, dass die rekursive und die explizite Form wirklich identisch sind.

Grüße
reverend


Bezug
        
Bezug
Anzahl der Paarungen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:10 Di 06.11.2012
Autor: reverend

Hallo missjanine,

ich fang mal rekursiv an.

> Eine gerade Anzahl an Mannschaften (2n Mannschaften, wobei
> n=natürliche Zahl), tritt in einem Turnier an, wobei am
> ersten Tag jede Mannschaft genau ein Spiel bestreiten
> soll.
>  Wie viele Paarungen sind für diese erste Runde möglich?
> Bzw. wieviele Möglichkeiten gibt es, die Mannschaften in
> Paare einzuteilen?
>  Bsp. Bei 4 Mannschaften, 3 Paarungen für den 1.
> Spieltag:
>  1. Paarung (a,b), (c,d)
>  2. Paarung (a,c), (b,d)
>  3. Paarung (a,d), (b,c)

>

>  Irgendwie versteh ich nicht, wie sich die Paarungen der
> Mannschaften ergeben.

Na, das sind einfach alle möglichen. Mehr gibts halt nicht.

> Ich wollte die Anzahl der Paarungen
> für sechs und 8 Mannschaften bzw. 2 Mannschaften
> herausfinden, nur irgendwie steh ich auf dem Schlauch!?

Gut. Nehmen wir mal 6 Mannschaften. Die heißen natürlich e und f und tauchen in der Variantenliste für 4 Mannschaften logischerweise noch gar nicht auf.

Nehmen wir also mal Mannschaft f in den Blick.
Die kann in der ersten Runde gegen jede der anderen fünf Mannschaften spielen.
Die dann noch übrigen vier Mannschaften haben wieder drei mögliche Paarungen.
Also: bei 6 Mannschaften gibt es 5*3=15 Paarungen.

So. Jetzt acht Mannschaften. Neu angereist sind g und h.

Mannschaft h kann gegen jede der sieben anderen spielen.
Die übrigen sechs Mannschaften haben dann noch, wie gerade errechnet, 15 mögliche Paarungen.
Also: bei 8 Mannschaften gibt es 7*15=105 Paarungen.

Wie fasst man das jetzt in eine nicht rekursive Formel?
Das ist Dein Part.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de