www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Anzahl der Untervektorräume
Anzahl der Untervektorräume < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anzahl der Untervektorräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:46 Sa 24.11.2007
Autor: PixCell

Aufgabe
Welche Aussage ist wahr bzw. falsch:

Wie viele Unterräume hat der [mm] \IR^{2}? [/mm]
a) Zwei, nämlich {0} und [mm] \IR^{2}? [/mm]
b) Vier, {0} , [mm] \IR^{2} [/mm] und die beiden Koordinatenachsen?
c) Unendlich viele?

Hallo zusammen!
Ich habe irgendwie einen Knoten im Hirn und stecke fest:
Teil a) konnte ich bereits durch das Gegenbeispiel [mm] U:=\{\vektor{0 \\ x}| x \in \IR\} [/mm] widerlegen.

Teil c) ist meiner Meinung nach die richtige Antwort.
Hat eigentlich nicht jeder Vektorraum unendlich viele Unterräume? Aber wo steht das bzw. wie ist das zu beweisen?

Nur bei Teil b) hakt es noch bei mir. Dass die Aussage falsch ist, ist mir intuitiv klar. Aber irgendwie finde ich kein Gegenbeispiel.

Wer kann mir auf die Sprünge helfen?

Ich habe die Frage in keinem anderen Forum gestellt.

        
Bezug
Anzahl der Untervektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 16:55 Sa 24.11.2007
Autor: felixf

Hallo!

> Welche Aussage ist wahr bzw. falsch:
>
> Wie viele Unterräume hat der [mm]\IR^{2}?[/mm]
>  a) Zwei, nämlich {0} und [mm]\IR^{2}?[/mm]
>  b) Vier, {0} , [mm]\IR^{2}[/mm] und die beiden Koordinatenachsen?
>  c) Unendlich viele?
>  Hallo zusammen!
>
>  Ich habe irgendwie einen Knoten im Hirn und stecke fest:
> Teil a) konnte ich bereits durch das Gegenbeispiel
> [mm]U:=\{\vektor{0 \\ x}| x \in \IR\}[/mm] widerlegen.

Genau. Wenn du jetzt noch den UVR [mm] $\{ \vektor{ x \\ x } \mid x \in \IR \}$ [/mm] anschaust, hast du auch Teil b) widerlegt.

> Teil c) ist meiner Meinung nach die richtige Antwort.

Genau.

> Hat eigentlich nicht jeder Vektorraum unendlich viele
> Unterräume? Aber wo steht das bzw. wie ist das zu
> beweisen?

Ueberlege dir, dass zu jedem $x [mm] \in \IR$ [/mm] der von [mm] $\vektor{ 1 \\ x }$ [/mm] erzeugte Untervektorraum von allen anderen solchen verschieden ist. Damit hast du zu jedem Element aus [mm] $\IR$ [/mm] einen Untervektorraum, also gibt es mindestens soviele UVRe wie es Elemente in [mm] $\IR$ [/mm] gibt.

Allgemein: wenn $K$ ein unendlicher Koerper ist und $V$ ein $K$-Vektorraum mit Dimension $> 1$, dann hat $V$ unendlich viele Untervektorraeume.

Ist [mm] $\dim [/mm] V = 1$, so hat $V$ immer genau zwei Untervektorraeume. Ist [mm] $\dim [/mm] V = 0$, so hat $V$ immer genau einen Untervektorraum.

Und ist $K$ endlich (etwa $K = [mm] \IF_2 [/mm] = [mm] \IZ/2\IZ$), [/mm] und ist $V$ endlichdimensional, dann hat $V$ nur endlich viele Elemente und auch nur endlich viele Teilmengen, und da jeder UVR eine Teilmenge ist, gibt es somit nur endlich viele UVRe.

> Nur bei Teil b) hakt es noch bei mir. Dass die Aussage
> falsch ist, ist mir intuitiv klar. Aber irgendwie finde ich
> kein Gegenbeispiel.

Siehe oben.

LG Felix


Bezug
                
Bezug
Anzahl der Untervektorräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:02 Sa 24.11.2007
Autor: PixCell

Hallo Felix!

Ja vielen Dank für Deine schnelle Hilfe.
Grrt, Teil b) war ja eigentlich ganz einfach - manchmal hat man echt ein Brett vor dem Kopf.....
Deine Erklärung mit der Anzahl der Vektorräume ist mir auch schon so halbwegs klar, muss mir das aber noch mal in Ruhe durch den Kopf gehen lassen.

Vielen Dank auf jeden Fall an Dich!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de