www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Interpolation und Approximation" - Approximation
Approximation < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Approximation: einer Tabelle....
Status: (Frage) beantwortet Status 
Datum: 13:59 Do 10.08.2006
Autor: Herby

.... mmmh, besser der Daten einer Tabelle [grins] oder so..



Ein fröhliches „Hallo“ an einem schönen Donnerstag



ich sitze grade an einer Approximation von einer Datentabelle. Die Näherungsfunktion müsste in Form einer 1/x Funktion lauten. Was für ein Verfahren nimmt man hier?

Daten:

[mm] P_0=(0,1|49960) [/mm]
[mm] P_1=(0,35|3970) [/mm]
[mm] P_2=(0,6|3150) [/mm]
[mm] P_3=(1,5|1580) [/mm]


Hat jemand eine Idee?


Liebe Grüße
Herby


        
Bezug
Approximation: Antwort
Status: (Antwort) fertig Status 
Datum: 15:18 Do 10.08.2006
Autor: MatthiasKr

Hallo Herby,

verstehe ich das richtig, dass du eine funktion in deine messwerte 'fitten' möchtest?

falls du das dem rechner überlassen willst, gibts da ja schöne programme, gnuplot kann das glaubich auch.

wenn dus händisch rechnen willst, musst du eine passende modellfunktion ansetzen und kleinste quadrate ausrechnen.

Gruß
Matthias

Bezug
                
Bezug
Approximation: ?kleinste Quadrate?
Status: (Frage) beantwortet Status 
Datum: 22:26 Do 10.08.2006
Autor: Herby

Hallo Matthias,

> Hallo Herby,
>  
> verstehe ich das richtig, dass du eine funktion in deine
> messwerte 'fitten' möchtest?

naja, ich habe diese vier Wertepaare vorgegeben bekommen - man erkennt ja leicht, dass wenn x gegen Null geht, der y-Wert steigt (und das mächtig :-) ) und wenn x gegen Unendlich läuft, wir hoffentlich bei Null landen.

Jetzt suche ich eine Kurve, die diesen Verlauf hat, mit ungefähr denselben Stützstellen.

> falls du das dem rechner überlassen willst, gibts da ja
> schöne programme, gnuplot kann das glaubich auch.
>  
> wenn dus händisch rechnen willst, musst du eine passende
> modellfunktion ansetzen und kleinste quadrate ausrechnen.
>  

und genau das weiß ich nicht, wie das geht. Also Interpolationspolynome aufstellen nach Lagrange oder Newton ist kein Problem, aber die gehen ja nicht, weil ich eine monoton fallende Kurve habe.

Andere Verfahren kenne ich leider nicht, vielleicht könnte mir hier jemand eines verraten.


So long [winken]

Liebe Grüße
Herby

Bezug
                        
Bezug
Approximation: Antwort
Status: (Antwort) fertig Status 
Datum: 16:38 Fr 11.08.2006
Autor: MatthiasKr

Hallo Herby,

wenn du genau wissen willst, wie die kleinsten quadrate funktionieren, schau mal im netz (zB. Wikipedia) nach. Hier nur die grobe herangehensweise.

sagen wir, du hast n messwerte [mm] $(x_i,y_i)$. [/mm] durch erfahrung und/oder mathematischen sachverstand setzt man nun eine funktion $f$ an, die diese werte möglichst gut approximieren soll. OBda sei f von den zwei parametern a und b abhängig. Man kann also zB. ansetzen

[mm] $f_{a,b}(x)=ax+b$ [/mm]  (linearer Ansatz), oder
[mm] $f_{a,b}(x)=\frac1{ax+b}$ [/mm] usw.

Man möchte nun die Parameter insofern optimal wählen, dass folgende summe (die summe der quadrate) minimal wird:

[mm] $S(a,b)=\summe_{i=1}^n (f_{a,b}(x_i)-y_i)^2 [/mm] $

damit S in $(a,b)$ minimal seien kann, müssen die partiellen ableitungen gleich null sein:

[mm] $\frac{\partial S}{\partial a}=2\cdot \summe_{i=1}^n (f_{a,b}(x_i)-y_i)\cdot \frac{\partial f_{a,b}}{\partial a}(x_i)$ [/mm]


analog für b. im nächsten schritt muss dann dieses gleichungssystem gelöst werden. je nach gewählter ansatzfunktion kann das leicht (linear->lineares GS) oder schwerer sein....

keine ahnung, ob die entstehenden gleichungen für eine ansatzfunktion in deinem fall gut lösbar sind.

Gruß
Matthias

Bezug
                                
Bezug
Approximation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:05 Mi 30.08.2006
Autor: Herby

Moin Matthias,

deine Antwort ist nicht in Vergessenheit geraten - ich hab nur im Moment, öhm, etwas wenig Zeit, das mal genauestens nachzulesen.

Aber irgendwann [pfeif]


Trotzdem natürlich "danke schön"


Liebe Grüße
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de