www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Approximation d. Binominalver.
Approximation d. Binominalver. < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Approximation d. Binominalver.: Verständnisp. Stetigkeitskorr.
Status: (Frage) überfällig Status 
Datum: 19:09 So 11.06.2006
Autor: Fussballweltmeister2006

Hallo erstmal!

Ich habe ein Problem der Verständigung was die Approximation der Binominalverteilung durch die Nominalverteilung angeht.

Diese Frage wurde bereits in diesem Forum gestellt, nur leider konnte ich nichts mit der Antwort anfangen und auch nicht bei diesem Posting weiter nachhaken, da es als erledigt bzw. beantwortet gekennzeichnet ist.

Im allgemeinen ist mein Problem, dass ich nicht direkt sehe, wann man die Stetigkeitskorrektur -0,5 und +0,5 anwendet.

Im konkreten Fall (aus einem Statistikübungsbuch) habe ich folgendes vorgefunden:

P(a [mm] \le [/mm] X [mm] \le [/mm] b) = [mm] \phi [/mm] [mm] (\bruch{b+0,5 - n \* \pi}{ \wurzel{n \* \pi (1- \pi)}}) [/mm] - [mm] \phi [/mm] [mm] (\bruch{a-0,5 - n \* \pi}{ \wurzel{n \* \pi (1- \pi)}}) [/mm]

Dieses Beispiel habe ich verstanden. Bei der oberen Grenze, in diesem Fall b, werden die 0,5 hinzu addiert während bei der Untergrenze a 0,5 subtrahiert werden.

Ebenso ist

[mm] P(X\ge [/mm] a) = 1- [mm] \phi [/mm] [mm] (\bruch{a-0,5 - n \* \pi}{ \wurzel{n \* \pi (1- \pi)}}) [/mm]

verständlich. Da [mm] P(X\ge [/mm] a) als 1- P(X < a) dargestellt werden kann.
Hier ist a ja wieder die Untergrenze und deswegen -0,5

Bisher würde ich mir merken:
Bei der Untergrenze  -0,5 und bei der Obergrenze +0,5

Aber nun kommt es:

P(a < X < b) = [mm] \phi [/mm] [mm] (\bruch{b-0,5 - n \* \pi}{ \wurzel{n \* \pi (1- \pi)}}) [/mm] - [mm] \phi [/mm] [mm] (\bruch{a+0,5 - n \* \pi}{ \wurzel{n \* \pi (1- \pi)}}) [/mm]

Und das verstehe ich nicht. Hier ist doch b größer als a und dementsprechend müsste doch b die Obergrenze und a die Untergrenze darstellen. Nach den -0,5 und +0,5 die in der Formel auftauchen ist es aber
genau umgekehrt. Dementsprechend sind meine oben gemachten Überlegungen auf diesen Fall nicht anwendbar und ich verstehe nicht wann man die Stetigkeitskorrektur richtig anwendet.

Ich hoffe jemand kann Licht ins Dunkele bringen und mir auf die Sprünge helfen.

Vielen Dank schonmal
und desweiteren

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Approximation d. Binominalver.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:49 So 11.06.2006
Autor: Fussballweltmeister2006

Ist es möglich das Posting zu Hochschule --> Mathematik zu verschieben?

Bei den ganzen neuen Sachen mit Formel-Editor etc. ist die wichtige Einordnung des Postings von mir falsch gemacht worden :(

Bezug
        
Bezug
Approximation d. Binominalver.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Di 13.06.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de