www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Approximation einer Funktion
Approximation einer Funktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Approximation einer Funktion: stückweise definierte Fkt.
Status: (Frage) beantwortet Status 
Datum: 19:55 Fr 05.10.2012
Autor: TrafficJunkie

Hallo,

Zunächsteinmal, dies ist keine Frage für ein Hausaufgabenblatt zum Studium sondern ein mathematisches Problem welches ich in meiner Freizeit habe :-)

Es geht maßgeblich um das Fundamentaldiagramm des Verkehrsflusses. Dieses kann durch drei Funktionen (Fluss-Dichte, Geschwindigkeit-Dichte, und Fluss-Stomgeschwindigkeit) ausgedrückt werden. Die Kurven lassen sich alle untereinander umrechnen.

Hier mal ein Beispiel wie das Fundamentaldiagramm aussieht:
[]http://upload.wikimedia.org/wikipedia/de/archive/7/7f/20110730130654!Fundamentaldiagramm.PNG

Besonders interessieren tut mich das unterste Diagramm, die Fluss-Dichte Relation. Diese habe ich wie es aus dem Lighthill-Whitham-Richards Modell bekannt ist umständlich hergeleitet. Dies ist eine komplizierte, stückweise definierte Funktion. Leider kann man damit sogut wie gar nicht anständig Rechnen (zum Beispiel müsste ich über das Diagramm Integrieren).

Jetzt suche ich eine Möglichkeit, das Diagramm annäherungsweise durch eine einfach zu rechende Funktion zu Approximieren.

Vorgegeben sein sollte nur [mm] D_{max}, Q_{max} [/mm] und die x-Koordinate des lokalen Maximums [mm] Q_{max}. [/mm]

Habt ihr eine Idee wie man eine solche Kurve einfach, stetig approximieren könnte?

Vielleicht durch ein Polynom welches auf dem Intervall [mm] \{0 ... D_{max}\} [/mm] ungefähr so aussieht? Gerne auch ganz kuriose dinge wie Produkte von Sinusen oder sowas.

Alternativ kann man auch die erste Funktion approximieren. Vielleicht könnte man da irgendwas mit dem Arctan basteln? Was meint ihr?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Approximation einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:49 Fr 05.10.2012
Autor: Event_Horizon

Hallo!

So ein konstanter Teil läßt sich meist gut mit einer Asymptoten approximieren.

Ich habe grade mal

[mm] $-\exp(-x)-0,1x+1$ [/mm]

geplottet, das kommt deiner Funktion schon sehr sehr nahe.  Der Parameter 0,1 ist die Steigung des rechten Teils, die Anfangssteigung und damit die Position des Maximums läßt sich sicher durch einen entsprechenden Faktor vor der e-Funktion bestimmen.

Ich denke, du kannst das sicher so hin biegen, daß du die Position des Maximums sowie des Nulldurchgangs rechts vorgeben kannst.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de