www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Approximation mit Treppenfkt.
Approximation mit Treppenfkt. < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Approximation mit Treppenfkt.: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:27 Do 03.02.2011
Autor: dimi727

Aufgabe
Aufgabe:

Zeigen Sie durch Approximation mit Treppenfunktionen :

[mm] \integral_{0}^{x}{t^{p} dt} [/mm] = [mm] \bruch{1}{p+1} x^{p+1} [/mm]  ,p Element [mm] \IN [/mm]

Hinweis: Verwenden Sie die Zerlegung [mm] t_{0} [/mm] = 0,  [mm] t_{k} [/mm] = [mm] x(1-\bruch{1}{\wurzel{n}})^{n-k} [/mm] , k = 1,...,n und zeigen Sie:

a) [mm] (t_{k} [/mm] - [mm] t_{k-1}) \to [/mm] 0  wenn n [mm] \to \infty [/mm] .

b) [mm] \summe_{k=1}^{n} t_{k}^{p}(t_{k}-t_{k-1}) \to \bruch{1}{p+1}x^{p+1} [/mm]  wenn n [mm] \to \infty [/mm]

Schönen Abend allerseits!

Ich hänge gerade an der oben beschriebenen Aufgabe.

a) Ist dabei noch relativ einfach.

[mm] \limes_{n\rightarrow\infty} (x(1-\bruch{1}{\wurzel{n}})^{n-k} [/mm] - [mm] x(1-\bruch{1}{\wurzel{n}})^{n-(k-1)}) [/mm] =
[mm] \limes_{n\rightarrow\infty} (x(1-\bruch{1}{\wurzel{n}})^{n-k} [/mm] - [mm] x(1-\bruch{1}{\wurzel{n}})^{n-k+1}) [/mm]

limes reingezogen :

[mm] \limes_{n\rightarrow\infty} (x(1-0)^{n-k} [/mm] - [mm] x(1-0)^{n-k+1}) [/mm] = x(1) - x(1) = 0

Ist gerad hier unschön von mir,aber mit dem "limes reinziehen" wollte ich es halt bildlich machen, was mit den einzelnen n's passiert. Hier sollte ja alles eindeutig sein?



Bei b) komme ich gerade (ich denke) kurz vorm Ziel nicht weiter:

[mm] \limes_{n\rightarrow\infty} \summe_{i=1}^{n} (x(1-\bruch{1}{\wurzel{n}})^{n-k})^{p} (x(1-\bruch{1}{\wurzel{n}})^{n-k} [/mm] - [mm] x(1-\bruch{1}{\wurzel{n}})^{n-(k-1)}) [/mm]

Das x kann man aus der hinteren Klammer rausziehen und erhält:

[mm] \limes_{n\rightarrow\infty} \summe_{i=1}^{n} ((1-\bruch{1}{\wurzel{n}})^{n-k})^{p} ((1-\bruch{1}{\wurzel{n}})^{n-k} [/mm] - [mm] (1-\bruch{1}{\wurzel{n}})^{n-(k-1)}) x^{p+1} [/mm] ..

Damit hätte ich schonmal das [mm] x^{p+1} [/mm] , was in der Aufgabenstellung auder der rechten Seite rauskommen soll...

Wie weise ich nun nach,dass die Summe von
[mm] \limes_{n\rightarrow\infty} \summe_{i=1}^{n} ((1-\bruch{1}{\wurzel{n}})^{n-k})^{p} ((1-\bruch{1}{\wurzel{n}})^{n-k} [/mm] - [mm] (1-\bruch{1}{\wurzel{n}})^{n-(k-1)}) [/mm]

gegen [mm] \bruch{1}{1+p} [/mm] läuft? Oder Wenn ich hier doch [mm] n\to\infty [/mm] mache, dann da doch 0 raus? Wie bei a) bewiesen?
Hat doch bestimmt mit irgendeiner reihe zu tun? Bitte um Hilfe.

        
Bezug
Approximation mit Treppenfkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 01:52 Sa 05.02.2011
Autor: skoopa

Hey!

> Aufgabe:
>  
> Zeigen Sie durch Approximation mit Treppenfunktionen :
>  
> [mm]\integral_{0}^{x}{t^{p} dt}[/mm] = [mm]\bruch{1}{p+1} x^{p+1}[/mm]  ,p
> Element [mm]\IN[/mm]
>  
> Hinweis: Verwenden Sie die Zerlegung [mm]t_{0}[/mm] = 0,  [mm]t_{k}[/mm] =
> [mm]x(1-\bruch{1}{\wurzel{n}})^{n-k}[/mm] , k = 1,...,n und zeigen
> Sie:
>  
> a) [mm](t_{k}[/mm] - [mm]t_{k-1}) \to[/mm] 0  wenn n [mm]\to \infty[/mm] .
>  
> b) [mm]\summe_{k=1}^{n} t_{k}^{p}(t_{k}-t_{k-1}) \to \bruch{1}{p+1}x^{p+1}[/mm]
>  wenn n [mm]\to \infty[/mm]
>  Schönen Abend allerseits!
>  
> Ich hänge gerade an der oben beschriebenen Aufgabe.
>  
> a) Ist dabei noch relativ einfach.
>  
> [mm]\limes_{n\rightarrow\infty} (x(1-\bruch{1}{\wurzel{n}})^{n-k}[/mm]
> - [mm]x(1-\bruch{1}{\wurzel{n}})^{n-(k-1)})[/mm] =
> [mm]\limes_{n\rightarrow\infty} (x(1-\bruch{1}{\wurzel{n}})^{n-k}[/mm]
> - [mm]x(1-\bruch{1}{\wurzel{n}})^{n-k+1})[/mm]
>  
> limes reingezogen :
>  
> [mm]\limes_{n\rightarrow\infty} (x(1-0)^{n-k}[/mm] - [mm]x(1-0)^{n-k+1})[/mm]
> = x(1) - x(1) = 0
>  
> Ist gerad hier unschön von mir,aber mit dem "limes
> reinziehen" wollte ich es halt bildlich machen, was mit den
> einzelnen n's passiert. Hier sollte ja alles eindeutig
> sein?

Also wenn du argumentierst, warum du den Limes "reinziehen" darfst dann müsste das soweit durchlaufen, denke ich.

>  
>
>
> Bei b) komme ich gerade (ich denke) kurz vorm Ziel nicht
> weiter:
>  
> [mm]\limes_{n\rightarrow\infty} \summe_{i=1}^{n} (x(1-\bruch{1}{\wurzel{n}})^{n-k})^{p} (x(1-\bruch{1}{\wurzel{n}})^{n-k}[/mm]
> - [mm]x(1-\bruch{1}{\wurzel{n}})^{n-(k-1)})[/mm]
>  
> Das x kann man aus der hinteren Klammer rausziehen und
> erhält:
>  
> [mm]\limes_{n\rightarrow\infty} \summe_{i=1}^{n} ((1-\bruch{1}{\wurzel{n}})^{n-k})^{p} ((1-\bruch{1}{\wurzel{n}})^{n-k}[/mm]
> - [mm](1-\bruch{1}{\wurzel{n}})^{n-(k-1)}) x^{p+1}[/mm] ..
>  
> Damit hätte ich schonmal das [mm]x^{p+1}[/mm] , was in der
> Aufgabenstellung auder der rechten Seite rauskommen
> soll...
>  
> Wie weise ich nun nach,dass die Summe von
>   [mm]\limes_{n\rightarrow\infty} \summe_{i=1}^{n} ((1-\bruch{1}{\wurzel{n}})^{n-k})^{p} ((1-\bruch{1}{\wurzel{n}})^{n-k}[/mm]
> - [mm](1-\bruch{1}{\wurzel{n}})^{n-(k-1)})[/mm]
>
> gegen [mm]\bruch{1}{1+p}[/mm] läuft? Oder Wenn ich hier doch
> [mm]n\to\infty[/mm] mache, dann da doch 0 raus? Wie bei a) bewiesen?
> Hat doch bestimmt mit irgendeiner reihe zu tun? Bitte um
> Hilfe.

Schau mal was passiert, wenn du den Faktor vor der Differenz in der Summe (verständlich???) in die Klammer ziehst und du die Summe auseinander ziehst. Dann fallen eine Menge Summanden weg und es bleibt eine reduzierte Gleichung übrig. Ich denke dann müsstest du weiter kommen.

Grüße!
skoopa

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de