www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Approximation per 0/1-Aussagen
Approximation per 0/1-Aussagen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Approximation per 0/1-Aussagen: Methodensuche
Status: (Frage) beantwortet Status 
Datum: 11:26 Di 26.07.2005
Autor: jatheri

Hallo ihr Wissenden!

Ich werde in meiner Diplomarbeit eine Erhebung durchführen und finde an einem Punkt keine passende statistische Methode:

Es geht um Abteilungen, die definierte Leistungen (ca 10 Stück) erbringen. Ich erhebe die Anzahl der Vollzeitstellen (als Zahl), sowie den Leistungskatalog mit 0="wird nicht erbracht" und 1="wird erbracht".
Meine Anfrage ist jetzt: Kann ich bei einer genügend großen Stichprobe auf die Anteile der Vollzeitstellen für bestimmte Leistungen schließen? Wenn ja, wie?
Ziel ist eine Aussage: Für die Leistung xy werden durchschnittlich soviel Vollzeitanteile aufgewendet.

Ich bin dankbar für Hilfe und habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Grüße
Jatheri

        
Bezug
Approximation per 0/1-Aussagen: Lineare Regression
Status: (Antwort) fertig Status 
Datum: 15:47 Di 26.07.2005
Autor: mathemaduenn

Hallo jatheri,
[willkommenmr]
Sei
[mm] y_j [/mm] die Anzahl der Stellen von Abteilung j(j=1..n)
[mm] a_i [/mm] die (durchschnittliche) Anzahl der Stellen für Leistung i (i=1..10)
[mm] x_{ij}=\begin{cases} 1, & \mbox{Abteilung j bietet Leistung i an } \\ 0, & \mbox{Abteilung j bietet Leistung i nicht an } \end{cases} [/mm]

Dann erhälst Du ein Gleichungssystem:
[mm] y_j=\summe_{i=1}^{10}a_i*x_{ij} [/mm] (j=1...n)
bzw. in Matrixschreibweise:
Y=X*a

Das ist ein überbestimmtes Gleichunssystem wenn Du nur die durchschnitliche Stellenanzahl haben willst kannst Du die Methode der Gaußschen Fehlerquadrate bemühen. Falls Du auch Statistik betreiben willst, kannst Du Dich ja über "Lineare Modelle" informieren.

viele Grüße
mathemaduenn

P.S.: Jetzt mußt Du natürlich diesen Diskussionstrang in Deiner Literaturliste mit angeben ;-)


Bezug
                
Bezug
Approximation per 0/1-Aussagen: Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:56 Fr 29.07.2005
Autor: jatheri

Hallo mathemaduenn,

ersma vielen Dank für Deine Antwort, vor allem die Formel hat es für mich noch mal strukturiert.

Durch plötzlichen Stress auffe Arbeit konnt ich bisher nicht dran weiterdenken - melde mich aber vielleicht noch mal im Forum, wenn ich die Frage noch konkreter stellen kann.

Thanx
Jatheri

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de