www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Approximationsproblem
Approximationsproblem < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Approximationsproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:15 Do 10.01.2008
Autor: Owen

Aufgabe
Gegeben ist  A|B= [mm] \pmat{ 3 & -5 & 1 | 5 \\ -5 & 3 & 0 | -10 \\ 1 & -7 & 2 | 0 \\ 3 & 11 & -4 | 10 } [/mm]
Bestimme den Rang A.

Um den Rang A zu bestimmen, muss man die Matrix mit dem Eliminationsverfahren umformen:
[mm] \pmat{ 3 & -5 & 1 |5 \\ 0 & -16 & 5 |-5 \\ 0 & 0 & 0 |0 \\ 0 & 0 & 0 |0 } [/mm]
Es gilt nun: Rang A=2=Rang (A|B) [mm] \wedge [/mm] 2<3
Der folgende Fall ist somit eingetreten:
Rang A=r=Rang (A|B) [mm] \wedge [/mm] r<n.
Das Gleichungssystem hat unendlich viele Lösungen.
Zum einen möchte ich mich vergewissern, was die einzelnen Ausdrücke bedeuten. Rang A meint die Anzahl unabhängiger Gleichungen, müsste daher in jedem Fall mit der Anzahl der Zeilen (ohne die Nullzeilen) übereinstimmen. n ist die Anzahl der Unbekannten, müsste somit mit der maximal vorhandenen Spaltenanzahl übereinstimmen. Bei Rang(A|B) bin ich mir nicht ganz sicher. So weit ich weiß, ist das die Anzahl der Zahlen die rechts stehen (5 und -5), somit die Anzahl 2. Stimmt das alles soweit? Zum anderen würde ich noch gerne wissen, wie man in diesem Falle eine annähernd "gute" Lösung bekommt. Dies hat etwas mit Approximation zu tun. Wie wird so etwas gemacht?


        
Bezug
Approximationsproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 14:49 Fr 11.01.2008
Autor: generation...x

Was den Rang angeht OK, wenn du dich nicht verrechnet hast. Lösungsmenge L ist jetzt eine Gerade, da dim L = n-r. Wie geht man vor? Du löst beide Gleichungen nach dem dritten Wert (sagen wir [mm] x_3) [/mm] auf:

[mm]x_2=\bruch{5+5x_3}{16}[/mm]

[mm]x_1=\bruch{35+3x_3}{16}[/mm]

Damit haben die Lösungen die Form:

[mm]\vec{y}=\bruch{1}{16} \vektor{35+3x_3 \\ 5+5x_3 \\ x_3} = \bruch{1}{16} ( \vektor{35 \\ 5 \\ 0} + x_3 \vektor{3 \\ 5 \\ 1} )[/mm]

Oder im Standardformat:

[mm]\vec{y}= \vektor{\bruch{35}{16} \\ \bruch{5}{16} \\ 0} + \lambda \vektor{3 \\ 5 \\ 1} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de