www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Arctangens Ableitung
Arctangens Ableitung < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Arctangens Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:46 Fr 20.04.2012
Autor: Margorion

Aufgabe 1
Zeigen Sie, dass die Funktionen f und g, f(x) := arctan [mm] (\bruch{2+x}{1-2x}) [/mm]
und g(x) := arctan x, auf dem Durchschnitt ihrer De finitionsbereiche gleiche Ableitungen haben.

Aufgabe 2
Was kann man aus 1. folgern? Kann f zu einer auf [mm] \IR [/mm] stetigen Funktion fortgesetzt werden?

Hi,
bei der ersten Aufgabe verstehe ich nicht was sie mit den Durchschnitt  ihrer Definitionsbereiche meinen. Der von arctan x ist ja [mm] \IR [/mm] .
Also müsste der von  f(x) := arctan [mm] (\bruch{2+x}{1-2x}) [/mm] ja dann eigentlich [mm] \IR \backslash [/mm] {1/2} sein. Wie soll man da den Durchschnitt bilden? Und wie sieht das mit dem Wertebereich aus? tan x ist ja [mm] (-\pi/2 [/mm] , [mm] \pi/2) [/mm] aber wie ist das für  f(x) := arctan [mm] (\bruch{2+x}{1-2x}) [/mm] da dieser ja  unendlich groß bei [mm] x\to \pm \infty [/mm] und bei [mm] x\to [/mm] 0.5 unendlich klein wird.

Als Ableitung habe ich: für (arctan(x))'= [mm] \bruch{1}{1+x^{2}} [/mm] raus bekommen.
Und für f(x) := arctan [mm] (\bruch{2+x}{1-2x}) [/mm] habe ich (f(x))'= [mm] \bruch{(1-2x)^{2}}{5*(1+x^{2})}. [/mm] Aber diese sind ja nicht gleich. Oder übersehe ich da was?
Gruß
margorion

        
Bezug
Arctangens Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:00 Fr 20.04.2012
Autor: schachuzipus

Hallo Margorion,


> Zeigen Sie, dass die Funktionen f und g, f(x) := arctan
> [mm](\bruch{2+x}{1-2x})[/mm]
>  und g(x) := arctan x, auf dem Durchschnitt ihrer
> De finitionsbereiche gleiche Ableitungen haben.
>  Was kann man aus 1. folgern? Kann f zu einer auf [mm]\IR[/mm]
> stetigen Funktion fortgesetzt werden?
>  Hi,
>  bei der ersten Aufgabe verstehe ich nicht was sie mit den
> Durchschnitt  ihrer Definitionsbereiche meinen. Der von
> arctan x ist ja [mm]\IR[/mm] . [ok]
>  Also müsste der von  f(x) := arctan [mm](\bruch{2+x}{1-2x})[/mm]
> ja dann eigentlich [mm]\IR \backslash[/mm] {1/2} sein. [ok] Wie soll man
> da den Durchschnitt bilden?

Na, was ist denn [mm]\IR\cap\IR\setminus\{1/2\}[/mm] ??

Welche reellen Zahlen liegen in beiden Mengen?

> Und wie sieht das mit dem
> Wertebereich aus? tan x ist ja [mm](-\pi/2[/mm] , [mm]\pi/2)[/mm] aber wie
> ist das für  f(x) := arctan [mm](\bruch{2+x}{1-2x})[/mm] da dieser
> ja  unendlich groß bei [mm]x\to \pm \infty[/mm] und bei [mm]x\to[/mm] 0.5
> unendlich klein wird.


Der Arcustangens ist streng monoton steigend und verläuft zwischen [mm]-\pi/2[/mm] und [mm]\pi/2[/mm] - genauer strebt [mm]\arctan(x)\to -\pi/2[/mm] für [mm]x\to -\infty[/mm] und [mm]\arctan(x)\to +\pi/2[/mm] für [mm]x\to +\infty[/mm]

> Als Ableitung habe ich: für (arctan(x))'= [mm]\bruch{1}{1+x^{2}}[/mm] raus bekommen. [ok]
> Und für f(x) := arctan [mm](\bruch{2+x}{1-2x})[/mm] habe ich
> (f(x))'= [mm]\bruch{(1-2x)^{2}}{5*(1+x^{2})}.[/mm]

Das sieht falsch aus.

Nach Kettenregel ergibt sich erstmal [mm]f'(x)=\frac{1}{1+\left(\frac{2+x}{1-2x}\right)^2}\cdot{}\left[\frac{2+x}{1-2x}\right]'[/mm]

Wenn du das mal richtig berechnest und korrekt zusammenfasst, kommt [mm]\frac{5}{5x^2+5}=\frac{1}{1+x^2}=g'(x)[/mm] heraus ...

> Aber diese sind
> ja nicht gleich. Oder übersehe ich da was?
>  Gruß
>  margorion

LG

schachuzipus


Bezug
                
Bezug
Arctangens Ableitung: Zweite Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:40 Mo 23.04.2012
Autor: Margorion

Aufgabe
Was kann man aus 1. folgern? Kann f zu einer auf [mm] \IR [/mm] stetigen Funktion fortgesetzt werden?

Danke erstmal!

Zu Aufgabe b)

Mein Ansatz:
Was kann man aus a) folgen?
Dass f und g horizontal parallel zueinander verlaufende Funktionen (oder Graphen) sind. Es handelt sich also nur um eine Verschiebung auf der y-Achse.

Kann man g auf ganz [mm] \IR [/mm] stetig erweitern ? Ich würde da einfach linksseitigen und rechtsseitigen Grenzwert bilden. Laut Wolframalpha müsste ich dann darauf kommen, dass es nicht funktioniert.

Stimmt das so?
gruß margorion

Bezug
                        
Bezug
Arctangens Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:51 Mo 23.04.2012
Autor: fred97


> Was kann man aus 1. folgern? Kann f zu einer auf [mm]\IR[/mm]
> stetigen Funktion fortgesetzt werden?
>  Danke erstmal!
>  
> Zu Aufgabe b)
>  
> Mein Ansatz:
>  Was kann man aus a) folgen?
> Dass f und g horizontal parallel zueinander verlaufende
> Funktionen (oder Graphen) sind. Es handelt sich also nur um
> eine Verschiebung auf der y-Achse.

Ja


>  
> Kann man g auf ganz [mm]\IR[/mm] stetig erweitern ?

Du meinst wohl f !!

> Ich würde da
> einfach linksseitigen und rechtsseitigen Grenzwert bilden.

Ja, an welcher Stelle ?


> Laut Wolframalpha müsste ich dann darauf kommen, dass es
> nicht funktioniert.
>  
> Stimmt das so?

Ja

FRED

>  gruß margorion


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de