Arithmetische Folgen und Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:52 Di 11.04.2006 | Autor: | Beginner |
Aufgabe 1 | Bis zu welchem Glied muss man die Folge 4,8,12,16,20,... fortsetzen, damit die Summe der Glieder 1200 beträgt? |
Aufgabe 2 | Die Summe aus den ersten 4 Gliedern einer arithmetischen Folge beträgt 62, die Summe aus den ersten 10 Gliedern 365. Bestimmen Sie die Folge. |
Guten Tag
Bei den zwei Textaufgaben versuchte ich die Formeln anzuwenden, scheiterte aber.
Wäre Dir sehr dankbar, wenn Du mir einen Tipp geben könntest?
Gruss
Thomas
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:17 Di 11.04.2006 | Autor: | felixf |
Hallo!
> Bis zu welchem Glied muss man die Folge 4,8,12,16,20,...
> fortsetzen, damit die Summe der Glieder 1200 beträgt?
> Die Summe aus den ersten 4 Gliedern einer arithmetischen
> Folge beträgt 62, die Summe aus den ersten 10 Gliedern 365.
> Bestimmen Sie die Folge.
> Guten Tag
>
> Bei den zwei Textaufgaben versuchte ich die Formeln
> anzuwenden, scheiterte aber.
Welche Formeln denn?
> Wäre Dir sehr dankbar, wenn Du mir einen Tipp geben
> könntest?
Offensichtlich geht es bei der ersten Aufgabe auch um arithmetische Folgen. Wird also Zeit, dass du dir ueberlegst, was eine arithmetische Folge ist (wenn du es nicht weisst).
So. Bei der ersten Aufgabe hat das $k$-te Folgenglied den Wert $4 k$. Also ist die Summe der ersten $n$ Formelglieder gegeben durch [mm] $\sum_{k=1}^n [/mm] 4 k = 4 [mm] \sum_{k=1}^n [/mm] k$. Jetzt hast du sicher eine Formel fuer $f(n) := [mm] \sum_{k=1}^n [/mm] k$ parat, die du hier einsetzen kannst.
Die Summe der ersten $n$ Formelglieder ist also $4 f(n)$. Damit das 1200 ergibt, muss also $4 f(n) = 1200$ sein. Damit hast du jetzt eine Gleichung, die du mit deiner Formel fuer $f(n)$ loesen kannst.
Zur zweiten Aufgabe: Diesmal ist die 4 aus Aufgabe 1 unbekannt: das $k$-te Formelglied hat also den Wert [mm] $\lambda [/mm] k + [mm] \mu$ [/mm] mit [mm] $\lambda$ [/mm] und [mm] $\mu$ [/mm] zwei Konstanten. Also ist die Summe der ersten vier Formeglieder [mm] $\lambda [/mm] f(4) +4 [mm] \mu$, [/mm] und die Summe der ersten zehn [mm] $\lambda [/mm] f(10) + 10 [mm] \mu$. [/mm] Damit hast du ein lineares Gleichungssystem, welches dir die Konstanten liefert.
LG Felix
|
|
|
|