www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Arkussinus Gesetz
Arkussinus Gesetz < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Arkussinus Gesetz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:02 Fr 29.03.2013
Autor: sissile

Aufgabe
Wir haben eingeführt bezüglich der Irrfahrten:
[mm] L_{2n} [/mm] = max [mm] \{ k \le 2n : S_k =0 \} [/mm]
(Zeitpunkt des letzten Besuchs in 0)

Nun hieß es [mm] L_{2n} [/mm] ist diskret Arkussinus verteilt.
[mm] P(L_{2n} [/mm] = n+k) = [mm] P(S_{2n} [/mm] =0) [mm] *P(S_{2n-2k} [/mm] =0)

Als Veranschaulichung was das mit Arcussin zu tun hat:
[mm] P(L_{2n} [/mm] = 2k ) [mm] \cong \frac{1}{\pi \sqrt{k*(n-k)}} [/mm] = 1/n [mm] f(\frac{k}{n}) [/mm]
mit f(x) = [mm] \frac{1}{ \pi \sqrt{x(1-x)}} [/mm]
Daraus sehen wir:
[mm] P(\frac{L_{2n}}{2n} \le [/mm] z)  [mm] \cong \sum_{k:k \le 2n} \frac{1}{n} f(\frac{k}{n}) \cong \int_0^z [/mm] f(x) dx = [mm] \frac{2}{\pi} arcsin(\sqrt{z}) [/mm]
z [mm] \in [/mm] [0,1]

Hallo
Ich weiß [mm] P(S_{2k} [/mm] =0)= [mm] P(S_{2n-1}=1) \cong \frac{1}{\sqrt{ \pi k}} [/mm]
Doch wie folgt daraus: [mm] P(S_{2n} [/mm] =0) [mm] *P(S_{2n-2k} [/mm] =0)= [mm] \cong \frac{1}{\pi \sqrt{k*(n-k)}} [/mm] ??

Nächste SChritt ist klar:
[mm] f(\frac{k}{n}) =\frac{1}{\pi * \sqrt{\frac{k}{n} *(1-\frac{k}{n})}} [/mm] = [mm] \frac{1}{\pi \sqrt{\frac{kn-k^2}{n^2}}} [/mm] = [mm] \frac{n}{\pi*\sqrt{k*(n-k)}} [/mm]

> [mm] P(\frac{L_{2n}}{2n} \le [/mm] z)  [mm] \cong \sum_{k:k \le 2n} \frac{1}{n} f(\frac{k}{n}) \cong \int_0^z [/mm] f(x) dx = [mm] \frac{2}{\pi} arcsin(\sqrt{z}) [/mm]

Ich weiß 0 [mm] \le L_{2N} \le [/mm] 2N
-> normiere mit Division durch 2n sodass die Zufallsvariable zwischen 0 und 1 liegt
Aber die (ungefährt) Gleichungskette verstehe ich nicht wirklich...

EDIT:Irrfahrt Begriffe
Grundraum $ [mm] \Omega [/mm] $ = $ [mm] \{ \omega =(\omega_1 ,.., \omega_N): \omega_i \in \{+1,-1\}, i=1,..,N\} [/mm] $
P-Gleichverteilung
Zuvallsvaribalen $ [mm] X_i(\omega)= \omega_i [/mm] $ ,i=1,..,N
$ [mm] S_k (\omega) [/mm] $ = $ [mm] \sum_{i=1}^k X_i (\omega) [/mm] $
$ [mm] S_o (\omega) [/mm] $ =0 (Startposition)
k-> $ [mm] S_k [/mm] $ heißt einfache Irrfahrt mit N Perioden.

        
Bezug
Arkussinus Gesetz: Antwort
Status: (Antwort) fertig Status 
Datum: 15:47 Sa 30.03.2013
Autor: Gonozal_IX

Hiho,

du kennst doch Ausdrücke der Form:

[mm] $\IP(S_{2k} [/mm] = 0) = [mm] \ldots$ [/mm] für beliebiges [mm] $k\in \IN$! [/mm]

Dann kennst du doch auch den Ausdruck:

[mm] $\IP(S_{2n - 2k} [/mm] = 0) = [mm] \IP(S_{2(n-k)} [/mm] = 0)$.

Ist ja nichts anderes als oben.
Du denkst da wohl einfach zu kompliziert.

[mm] $\IP(S_{2k} [/mm] = 0) * [mm] \IP(S_{2n - 2k} [/mm] = 0)$ ist dann einfach hinschreiben und ein bisschen zusammenfassen.

>  Aber die (ungefährt) Gleichungskette verstehe ich nicht wirklich...

Was verstehst du nicht?

Das erste ist einfach einsetzen von dem, was du davor gemacht hast, nämlich [mm] \IP(L_{2n} [/mm] = 2k) berechen.
Bedenke: [mm] $\IP(L_{2n} \le [/mm] z) = [mm] \summe_{k\le z}\IP(L_{2n} [/mm] = k)$

Das zweite ist einfach der Übergang von der Riemannschen Summe zum Integral für ausreichend Große n (schau dir da nochmal die Definition des Riemann-Integrals über Riemann-Summen an).

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de