www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Art der Singularität
Art der Singularität < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Art der Singularität: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:15 Mo 04.07.2011
Autor: coffeee5000

Aufgabe
Bestimmen Sie die Arten der isolierten Singularitäten folgender Funktionen:

i) [mm] f(z) = \bruch{\sin (z)}{z} \quad z \not= 0[/mm]

ii) [mm] f(z) = \sin (\bruch{1}{z}) \quad z \not= 0[/mm]

iii) [mm] f(z) = \bruch{1}{\sin(z)} \quad z \not= k\pi[/mm] für [mm]k \in \IZ[/mm]

iv) [mm] f(z) = \bruch{1}{\sin(\bruch{1}{z})} \quad \bruch{1}{z} \not= k\pi[/mm] für [mm]k \in \IZ\setminus\{0\}[/mm] und [mm]z \not= 0[/mm].

Hallo zusammen,

zu i.):
Also [mm] f(z) = \bruch{1}{z} \summe_{\nu=0}^{\infty}(-1)^{\nu}\bruch{z^{2\nu+1}}{(2\nu+1)!} = \summe_{\nu=0}^{\infty}(-1)^{\nu}\bruch{z^{2\nu}}{(2\nu+1)!} = ?[/mm]
Hier finde ich keinen Weg um [mm]\nu[/mm] in der Potenz von z zu isolieren.
Ich vermute aber, dass es sich um eine hebbare Singularität handelt.
Vllt. könnte man zeigen das [mm]f(z)[/mm] in einer Umgebung von 0 beschränkt ist.

zu ii.):
[mm] f(z) = \sin (\bruch{1}{z}) = \summe_{\nu=0}^{\infty}(-1)^{\nu}\bruch{z^{-2\nu-1}}{(2\nu+1)!} = ?[/mm]
Hier weiß ich nicht, ob das die Reihe einer bekannten Funktion ist oder nicht. Wieder finde ich keinen Weg [mm]\nu[/mm] zu isolieren.
Ich vermute aber eine wesentliche Singularität.

zu iii.):
Der Sinus hat an [mm]z = k\pi[/mm] für [mm]k \in \IZ[/mm] Nullstellen der Ordnung 1, also hat [mm]f(z)[/mm] Pole der Ordnung 1 an [mm]z = k\pi[/mm] für [mm]k \in \IZ[/mm].

zu iv.):
Hier lässt sich bestimmt eine Argumentation mit den Ergebnissen aus ii.) aufstellen. Aber wie?
Ich vermute Pole der Ordnung 1 an [mm] \bruch{1}{z} = k\pi[/mm] für [mm]k \in \IZ\setminus\{0\}[/mm] und eine hebbare Singularität an [mm]z = 0[/mm].

Anscheinend habe ich ein Problem mit der Reihenentwicklung. Mir fallen keine "Tricks" für eine geschickte Umformung ein. Wenn ich diese hätte, dann müßte ich nicht vermuten.

Vielen Dank im Vorraus!

        
Bezug
Art der Singularität: Antwort
Status: (Antwort) fertig Status 
Datum: 15:36 Mo 04.07.2011
Autor: MathePower

Hallo coffeee5000,

> Bestimmen Sie die Arten der isolierten Singularitäten
> folgender Funktionen:
>  
> i) [mm]f(z) = \bruch{\sin (z)}{z} \quad z \not= 0[/mm]
>  
> ii) [mm]f(z) = \sin (\bruch{1}{z}) \quad z \not= 0[/mm]
>  
> iii) [mm]f(z) = \bruch{1}{\sin(z)} \quad z \not= k\pi[/mm] für [mm]k \in \IZ[/mm]
>  
> iv) [mm]f(z) = \bruch{1}{\sin(\bruch{1}{z})} \quad \bruch{1}{z} \not= k\pi[/mm]
> für [mm]k \in \IZ\setminus\{0\}[/mm] und [mm]z \not= 0[/mm].
>  Hallo
> zusammen,
>  
> zu i.):
>  Also [mm]f(z) = \bruch{1}{z} \summe_{\nu=0}^{\infty}(-1)^{\nu}\bruch{z^{2\nu+1}}{(2\nu+1)!} = \summe_{\nu=0}^{\infty}(-1)^{\nu}\bruch{z^{2\nu}}{(2\nu+1)!} = ?[/mm]
>  
> Hier finde ich keinen Weg um [mm]\nu[/mm] in der Potenz von z zu
> isolieren.
>  Ich vermute aber, dass es sich um eine hebbare
> Singularität handelt.
>  Vllt. könnte man zeigen das [mm]f(z)[/mm] in einer Umgebung von 0
> beschränkt ist.
>  
> zu ii.):
>  [mm]f(z) = \sin (\bruch{1}{z}) = \summe_{\nu=0}^{\infty}(-1)^{\nu}\bruch{z^{-2\nu-1}}{(2\nu+1)!} = ?[/mm]
>  
> Hier weiß ich nicht, ob das die Reihe einer bekannten
> Funktion ist oder nicht. Wieder finde ich keinen Weg [mm]\nu[/mm] zu
> isolieren.
>  Ich vermute aber eine wesentliche Singularität.
>  
> zu iii.):
>  Der Sinus hat an [mm]z = k\pi[/mm] für [mm]k \in \IZ[/mm] Nullstellen der
> Ordnung 1, also hat [mm]f(z)[/mm] Pole der Ordnung 1 an [mm]z = k\pi[/mm]
> für [mm]k \in \IZ[/mm].
>  
> zu iv.):
>  Hier lässt sich bestimmt eine Argumentation mit den
> Ergebnissen aus ii.) aufstellen. Aber wie?
>  Ich vermute Pole der Ordnung 1 an [mm]\bruch{1}{z} = k\pi[/mm] für
> [mm]k \in \IZ\setminus\{0\}[/mm] und eine hebbare Singularität an [mm]z = 0[/mm].
>  
> Anscheinend habe ich ein Problem mit der Reihenentwicklung.
> Mir fallen keine "Tricks" für eine geschickte Umformung
> ein. Wenn ich diese hätte, dann müßte ich nicht
> vermuten.
>  



Falls f(z) an der Stelle c keine hebbare Singularität hat,
dann kann die Art der Singularität so bestimmt werden:

Für welches [mm]\alpha \in \IN[/mm]

ist

[mm]\limes_{z \rightarrow c}\left(z-c\right)^{\alpha\right}*f\left(z\right)[/mm]

beschränkt.


> Vielen Dank im Vorraus!


Gruss
MathePower

Bezug
        
Bezug
Art der Singularität: Antwort
Status: (Antwort) fertig Status 
Datum: 15:50 Mo 04.07.2011
Autor: fred97


> Bestimmen Sie die Arten der isolierten Singularitäten
> folgender Funktionen:
>  
> i) [mm]f(z) = \bruch{\sin (z)}{z} \quad z \not= 0[/mm]
>  
> ii) [mm]f(z) = \sin (\bruch{1}{z}) \quad z \not= 0[/mm]
>  
> iii) [mm]f(z) = \bruch{1}{\sin(z)} \quad z \not= k\pi[/mm] für [mm]k \in \IZ[/mm]
>  
> iv) [mm]f(z) = \bruch{1}{\sin(\bruch{1}{z})} \quad \bruch{1}{z} \not= k\pi[/mm]
> für [mm]k \in \IZ\setminus\{0\}[/mm] und [mm]z \not= 0[/mm].
>  Hallo
> zusammen,
>  
> zu i.):
>  Also [mm]f(z) = \bruch{1}{z} \summe_{\nu=0}^{\infty}(-1)^{\nu}\bruch{z^{2\nu+1}}{(2\nu+1)!} = \summe_{\nu=0}^{\infty}(-1)^{\nu}\bruch{z^{2\nu}}{(2\nu+1)!} = ?[/mm]
>  
> Hier finde ich keinen Weg um [mm]\nu[/mm] in der Potenz von z zu
> isolieren.

  ???????  Was meinst Du damit ??

>  Ich vermute aber, dass es sich um eine hebbare
> Singularität handelt.
>  Vllt. könnte man zeigen das [mm]f(z)[/mm] in einer Umgebung von 0
> beschränkt ist.

Es ist doch stadtbekannt, dass [mm] \limes_{z \rightarrow 0}\bruch{sin(z)}{z}=1 [/mm] ist !!!

>  
> zu ii.):
>  [mm]f(z) = \sin (\bruch{1}{z}) = \summe_{\nu=0}^{\infty}(-1)^{\nu}\bruch{z^{-2\nu-1}}{(2\nu+1)!} = ?[/mm]
>  
> Hier weiß ich nicht, ob das die Reihe einer bekannten
> Funktion ist oder nicht.


Das ist die Laurententwicklung von  [mm] \sin (\bruch{1}{z}) [/mm] um 0. Schreib die mal aus, dann siehst Du , dass f in 0 eine wesentliche Singularität hat.


> Wieder finde ich keinen Weg [mm]\nu[/mm] zu
> isolieren.


?????


>  Ich vermute aber eine wesentliche Singularität.
>  
> zu iii.):
>  Der Sinus hat an [mm]z = k\pi[/mm] für [mm]k \in \IZ[/mm] Nullstellen der
> Ordnung 1, also hat [mm]f(z)[/mm] Pole der Ordnung 1 an [mm]z = k\pi[/mm]
> für [mm]k \in \IZ[/mm].

Das ist korrekt !


>  
> zu iv.):
>  Hier lässt sich bestimmt eine Argumentation mit den
> Ergebnissen aus ii.) aufstellen. Aber wie?
>  Ich vermute Pole der Ordnung 1 an [mm]\bruch{1}{z} = k\pi[/mm] für
> [mm]k \in \IZ\setminus\{0\}[/mm]

Stimmt.

> und eine hebbare Singularität an [mm]z = 0[/mm].

Nein. z=0 ist doch Häufungspunkt von Polen. Wie nennt man sowas ? Antwort: Warschau. Spass beiseite: z=0 ist keine isolierte Singularität von f.

FRED

>  
> Anscheinend habe ich ein Problem mit der Reihenentwicklung.
> Mir fallen keine "Tricks" für eine geschickte Umformung
> ein. Wenn ich diese hätte, dann müßte ich nicht
> vermuten.
>  
> Vielen Dank im Vorraus!


Bezug
                
Bezug
Art der Singularität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:21 Di 05.07.2011
Autor: coffeee5000

zu i.)
[mm] f(z) = \bruch{\sin(z)}{z} = \summe_{\nu=0}^{\infty} (-1)^{\nu}\bruch{z^{2\nu}}{(2\nu+1)!}[/mm]
[mm]\Rightarrow \quad a_{\nu}\equiv 0 \quad \forall \nu < 0[/mm]
[mm]\Rightarrow \quad f(z)[/mm] hat an 0 eine hebbare Lücke.

zu ii.)
[mm] f(z) = \sin(\bruch{1}{z}) = \summe_{\nu=0}^{\infty} (-1)^{\nu}\bruch{z^{-2\nu-1}}{(2\nu+1)!} = \summe_{\nu=-\infty}^{0} (-1)^{-\nu}\bruch{z^{2\nu-1}}{(-2\nu+1)!}[/mm]
[mm]\Rightarrow \quad a_{\nu}\not= 0 \quad \forall \nu \le 0[/mm]
[mm]\Rightarrow \quad f(z)[/mm] hat an 0 eine wesentliche Singularität.

Sollte das so stimmen, dann weiß ich nun wo mein Problem lag.
Ich wollte [mm]f(z)[/mm] immer direkt als [mm]f(z) = \summe_{\nu=-\infty}^{\infty}a_{\nu}(z-a)^{\nu}[/mm] darstellen. Das es für die Bestimmung der Art der Singularität nur nötig ist, den Exponenten positiv zu setzen, war mir vorher nicht klar.
Wenn ich aber weiter gehe und die Residuen bestimmen will, dann benötige ich doch [mm] a_{-1} [/mm] der Darstellung [mm]f(z) = \summe_{\nu = -\infty}^{\infty} a_{\nu}(z-a)^{\nu}[/mm].
Kann ich dort auch auf eine Darstellung mit "krummen" Exponenten zurückgreifen oder muss ich dort direkt [mm]z^{\nu}[/mm] rausarbeiten?
Das habe ich übrigens oben gemeint gehabt mit "[mm]\nu[/mm] isolieren".

Bezug
                        
Bezug
Art der Singularität: Antwort
Status: (Antwort) fertig Status 
Datum: 11:41 Di 05.07.2011
Autor: fred97


> zu i.)
>  [mm]f(z) = \bruch{\sin(z)}{z} = \summe_{\nu=0}^{\infty} (-1)^{\nu}\bruch{z^{2\nu}}{(2\nu+1)!}[/mm]
>  
> [mm]\Rightarrow \quad a_{\nu}\equiv 0 \quad \forall \nu < 0[/mm]
>  
> [mm]\Rightarrow \quad f(z)[/mm] hat an 0 eine hebbare Lücke.
>  
> zu ii.)
>  [mm]f(z) = \sin(\bruch{1}{z}) = \summe_{\nu=0}^{\infty} (-1)^{\nu}\bruch{z^{-2\nu-1}}{(2\nu+1)!} = \summe_{\nu=-\infty}^{0} (-1)^{-\nu}\bruch{z^{2\nu-1}}{(-2\nu+1)!}[/mm]
>  
> [mm]\Rightarrow \quad a_{\nu}\not= 0 \quad \forall \nu \le 0[/mm]
>  
> [mm]\Rightarrow \quad f(z)[/mm] hat an 0 eine wesentliche
> Singularität.
>  
> Sollte das so stimmen, dann weiß ich nun wo mein Problem
> lag.

Es stimmt so.


>  Ich wollte [mm]f(z)[/mm] immer direkt als [mm]f(z) = \summe_{\nu=-\infty}^{\infty}a_{\nu}(z-a)^{\nu}[/mm]
> darstellen. Das es für die Bestimmung der Art der
> Singularität nur nötig ist, den Exponenten positiv zu
> setzen,


von was sprichst Du ???


> war mir vorher nicht klar.
>  Wenn ich aber weiter gehe und die Residuen bestimmen will,
> dann benötige ich doch [mm]a_{-1}[/mm] der Darstellung [mm]f(z) = \summe_{\nu = -\infty}^{\infty} a_{\nu}(z-a)^{\nu}[/mm].

Ja


>  
> Kann ich dort auch auf eine Darstellung mit "krummen"
> Exponenten zurückgreifen oder muss ich dort direkt [mm]z^{\nu}[/mm]
> rausarbeiten?

ich verstehe nicht, was Du meinst !

FRED

>  Das habe ich übrigens oben gemeint gehabt mit "[mm]\nu[/mm]
> isolieren".


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de