www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Assoziative Gruppe?
Assoziative Gruppe? < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Assoziative Gruppe?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:52 Sa 27.10.2007
Autor: Elfe

Aufgabe
Ist die Menge G = {q [mm] \in \IQ [/mm] | q > 0} zusammen mit der Verknüpfung  G x G [mm] \to [/mm] G, (x,y) [mm] \mapsto \bruch{x}{y} [/mm] eine Gruppe? Ist diese Verknüpfung assoziativ?  

Hallo,
also generell weiß ich wohl was eine Gruppe ist und was die für Eigenschaften besitzen muss. Bei dieser Aufgabe allerdings kommt eine Division vor und wir hatten das bisher nur mit Addition und Multiplikation und da bin ich mir nicht sicher, ob ich da richtig denke... Deshalb hätte ich gerne ein paar Tips wenn ich das falsch gemacht habe.

I)  für alle x,y,z  [mm] \in [/mm] G ist [mm] \bruch{x}{\bruch{y}{z}} [/mm] = [mm] \bruch{\bruch{x}{y}}{z} [/mm]    oder? Und das stimmt ja würde ich sagen.
Denn es wäre ja beides [mm] x*\bruch{1}{y} [/mm] * [mm] \bruch{1}{z} [/mm]

II) Es gibt ein e [mm] \in [/mm] G mit

1) für jedes x [mm] \in [/mm] G ist [mm] \bruch{e}{x} [/mm] = [mm] \bruch{x}{e} [/mm] = x
Habe ich die Eigenschaft so richtig verstanden und auf meinen Fall umformuliert? Weil wenn ich das so richtig gemacht habe, dann würde ich sagen, dass das eben so nicht stimmt. Dass es kein neutrales Element e gibt, für dass diese Eigenschaft erfüllt ist. Aber ich mach erstmal trotzdem weiter

2) für jedes x [mm] \in [/mm] G gibt es ein x' [mm] \in [/mm] G mit x'*x = x*x' = e. Wobei x' das Inverse von x ist.
Da würde ich dann sagen, dass es ja gehen würde. Also [mm] \bruch{x}{1} [/mm] * [mm] \bruch{1}{x} [/mm] = [mm] \bruch{1}{x} [/mm] * [mm] \bruch{x}{1} [/mm] = e

Dann wäre das neutrale Element auch 1. Jetzt ist die Frage, ob ich das auch wirklich richtig angewendet hab? Würd mich freuen wenn mir jemand was dazu sagen könnte.

Und auf die Frage, ob die Verknüpfung assoziativ ist, würde ich sagen ja. Dadurch, dass ich das in der ersten Eigenschaft dann gezeigt habe ?

lg Elfe

        
Bezug
Assoziative Gruppe?: Antwort
Status: (Antwort) fertig Status 
Datum: 18:05 Sa 27.10.2007
Autor: koepper

Hallo,

du machst dir leider viel zu viel Arbeit: Beantworte erst die Frage nach der Assoziativität.

> I)  für alle x,y,z  [mm]\in[/mm] G ist [mm]\bruch{x}{\bruch{y}{z}}[/mm] =
> [mm]\bruch{\bruch{x}{y}}{z}[/mm]    oder? Und das stimmt ja würde
> ich sagen.

oh weh... probier es mal mit einigen Beispielzahlen aus.

Da die Gruppenoperation assoziativ sein muß, hat sich damit die Frage auch erledigt.
Die anderen Bedingugnen für eine Gruppe müssen dann nicht mehr geprüft werden, wenn eine schon versagt hat.

LG
Will

Bezug
                
Bezug
Assoziative Gruppe?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:10 Sa 27.10.2007
Autor: Elfe

okay okay, mir ist es selbst peinlich ;-) Irgendwie fürchte ich, dass mich das ganze mathe immer weiter zu einem einzigen blackout führt.

danke für den hinweis

lg Elfe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de