www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Asymptote von e-Funktion
Asymptote von e-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Asymptote von e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:58 Mi 09.11.2005
Autor: DerVogel

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi, kann mir jemand die Asymptote der Funktion
f(x)= ((e ^ -x) - 1) ^2
sagen???
Ich muss die Fläche zw. Graph und Asymptote ausrechnen.
Danke!!

        
Bezug
Asymptote von e-Funktion: Umformen
Status: (Antwort) fertig Status 
Datum: 21:15 Mi 09.11.2005
Autor: Loddar

Hallo DerVogel,

[willkommenmr] !!


Ich denke mal, Du meinst die Asymptote für $x [mm] \rightarrow \red{+}\infty$ [/mm] , oder?


Schreiben wir mal Deine Funktionsvorschrift etwas um. Vielleicht siehst Du es dann selber:


$f(x) \ = \ [mm] \left(e^{-x}-1\right)^2 [/mm] \ = \ [mm] \left(\bruch{1}{e^x}-1\right)^2$ [/mm]


Es gilt ja: [mm] $\limes_{x\rightarrow +\infty}e^x [/mm] \ = \ [mm] +\infty$ [/mm] .

Daraus folgt dann: [mm] $\limes_{x\rightarrow +\infty}\bruch{1}{e^x} [/mm] \ = \ [mm] \bruch{1}{\infty} [/mm] \ = \ 0$

(Der Ausdruck [mm] $\bruch{1}{\infty}$ [/mm] ist natürlich nur in Anführungszeichen zu sehen ;-) ...)


Was bedeutet das nun für Deinen gesuchten Grenzwert bzw. Deine gesuchte Asymptote?


Zur weiteren Veranschaulichung noch eine kleine Skizze:

[Dateianhang nicht öffentlich]


Gruß
Loddar


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Asymptote von e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:28 Fr 11.11.2005
Autor: DerVogel

Die Asymptote erhalte ich durch ausmultiplizieren, aber die Fläche zw. Asymptote und der FUnktion ist doch [mm] \infty [/mm] oder nicht?

Bezug
                        
Bezug
Asymptote von e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:51 Fr 11.11.2005
Autor: Zwerglein

Hi, DerVogel,

> Die Asymptote erhalte ich durch ausmultiplizieren,

Jedenfalls: Die Asymptote hat die Gleichung y=1.

> aber die
> Fläche zw. Asymptote und der FUnktion ist doch [mm]\infty[/mm] oder
> nicht?

Hier nicht!
Obwohl die Fläche nach rechts unbegrenzt ist, hat sie einen endlichen Flächeninhalt!
Das kannst Du Dir anschaulich so erklären, dass die "Höhe" schneller gegen Null geht als die "Breite" gegen Unendlich!

Rechnerisch:
Zuerst bestimmst Du die linke Grenze des Integrals durch Gleichsetzen von Funktionsterm und Asymptote. Ergebnis: x=-ln(2)

Nun musst Du berechnen:

[mm] \limes_{b\rightarrow\infty}\integral_{-ln(2)}^{b} [/mm] {(1 - f(x)) dx}

= [mm] \limes_{b\rightarrow\infty}\integral_{-ln(2)}^{b} {(2e^{-x} - e^{-2x}) dx} [/mm]

= [mm] \limes_{b\rightarrow\infty}[-2e^{-x}+0,5*e^{-2x}]_{-ln(2)}^{b} [/mm]

= [mm] \limes_{b\rightarrow\infty}[-2e^{-b}+0,5*e^{-2b}] [/mm] - [mm] (-2e^{ln(2)}+0,5*e^{2ln(2)} [/mm]

Der erste Teil geht (analog zu Loddars Ausführungen) wieder gegen 0.

Übrig bleibt demnach: [mm] 2e^{ln(2)}-0,5*e^{2ln(2)} [/mm]
Bedenke nun, dass [mm] e^{ln(2)} [/mm] = 2 ist und [mm] e^{2ln(2)} [/mm] = 4.
Dann ist das Ergebnis letztlich: 2.

mfG!
Zwerglein


Bezug
                                
Bezug
Asymptote von e-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:21 Sa 12.11.2005
Autor: DerVogel

Vielen Dank für die schnellen Antworten!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de