www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Asymptoten
Asymptoten < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Asymptoten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:22 Mo 28.01.2008
Autor: Domestic

Aufgabe
[mm] \bruch {2x^2}{2+x^2} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Könnt ihr mir itte sagen, wie ich die Asymptoten dieser/eier Funktion berechne.

Gruß Domestic

        
Bezug
Asymptoten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:38 Mo 28.01.2008
Autor: Domestic

Laut Musterlösung gibt es eine waagerechte Asymptote bei y=2..

allerdings:

[mm] \limes_{x\rightarrow\infty}\bruch{2x^2}{2+x^2} [/mm]

[mm] =\bruch {2*\infty}{2+\infty} [/mm]

Seh ich das falsch?



Bezug
                
Bezug
Asymptoten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:48 Mo 28.01.2008
Autor: Teufel

Hallo!

Ja, Polynomdivision führt auch sicher zum Ziel, aber du kannst auch x² in Zähler und Nenner ausklammern und wegkürzen.

Bezug
                        
Bezug
Asymptoten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:55 Mo 28.01.2008
Autor: Domestic

Und woran sehe ich ob es ne waagerechte, senkrechte oder schiefe Asymptote ist?

Bezug
                                
Bezug
Asymptoten: verschiedene Asymptoten
Status: (Antwort) fertig Status 
Datum: 18:00 Mo 28.01.2008
Autor: Loddar

Hallo Domestic!


Betrachte das Ergebnis der MBPolynomdivision. Verbleibt vor dem gebrochen-rationalen Rest nur ein konstanter Wert (wie es hier sein wird), handelt es sich um eine waagerechte Asymptote.

Schräge Asymptoten liegen vor, wenn der ganz-rationale Term die Form $a*x+b_$ hat.

Senkrechte Asymptoten liegen an Polstellen vor.


Gruß
Loddar


Bezug
        
Bezug
Asymptoten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:39 Mo 28.01.2008
Autor: Sternchen0707

Du musst die Polynomdivision anwenden.
Die ganz rationale Zahl, die du am Ende erhältst ist deine Asymptote.
In diesem Fall y=2

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de