www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Asymptoten
Asymptoten < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Asymptoten: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 20:24 Do 12.07.2012
Autor: Windbeutel

Aufgabe
F:x-> [mm] \bruch{3}{x-2} [/mm]

a)Bestimme den maximalen Definitionsbereich der Funktion

b Wie verhält sich die Funktion für [mm] x\to [/mm] unendlich und [mm] x\to [/mm] minus unendlich
Gebe die beiden Grenzwerte für  [mm] x\to [/mm] unendlich und [mm] x\to [/mm] minus unendlich und die Gleichung der Asymptote g an, der sich die Funktion nähert.

c) wie verhält sich die Funktion an ihrer Definitionslücke? gebe die Gleichung der senkrechten Asymptoten der Polstelle(n) an.

Hallo,
an dieser Aufgabe sitze ich nun schon solange, dass ich erstrecht nichts mehr verstehe.

Zu a) würde ich mal sagen Df= R ohne 2
so und bei b) beginnt das Desaster.

Ich habe mal folgende Überlegung angestellt :


[mm] \bruch{3}{x-2} [/mm]

Da [mm] \bruch{3}{x} [/mm] gegen Null strebt müsste doch [mm] \bruch{3}{x-2} [/mm] gegen -2 streben, oder sehe ich das Falsch?
Dann liegt meine waagerechte Asymptote bei -2.

Zur Kontrolle habe ich dass mal in einen grafischen Taschenrechner eingegeben und der sieht das wohl auch so.

Wenn ich nun aber für x beliebige Werte einsetze (Wertetabelle)  komme ich auf andere Ergebnisse als in diesem Graphen. Was mache ich nur falsch, welcher denkfehler hat sich eingeschlichen.

So müsste laut Graph der y-wert irgenddwo bei -1,4 liegen wenn ich für x = 5 einsetzte. Setzte ich 5 in meine Gleichung ein komme ich auf 1.
Irgendwo begehe ich einen (höchstwahrscheinlich einfahcen ) Denkfehler.

Für jeden Hinweis bin ich dankbar.
So und nun gehe ich frustriert ins Bett.
Danke euch im Voraus

        
Bezug
Asymptoten: Antwort
Status: (Antwort) fertig Status 
Datum: 20:38 Do 12.07.2012
Autor: MathePower

Hallo Windbeutel,

> F:x-> [mm]\bruch{3}{x-2}[/mm]
>  
> a)Bestimme den maximalen Definitionsbereich der Funktion
>  
> b Wie verhält sich die Funktion für [mm]x\to[/mm] unendlich und
> [mm]x\to[/mm] minus unendlich
>  Gebe die beiden Grenzwerte für  [mm]x\to[/mm] unendlich und [mm]x\to[/mm]
> minus unendlich und die Gleichung der Asymptote g an, der
> sich die Funktion nähert.
>  
> c) wie verhält sich die Funktion an ihrer
> Definitionslücke? gebe die Gleichung der senkrechten
> Asymptoten der Polstelle(n) an.
>  Hallo,
>  an dieser Aufgabe sitze ich nun schon solange, dass ich
> erstrecht nichts mehr verstehe.
>  
> Zu a) würde ich mal sagen Df= R ohne 2


[mm]D_{f}=\IR \backslash \left\{2\right\}[/mm]

[ok]


>  so und bei b) beginnt das Desaster.
>  
> Ich habe mal folgende Überlegung angestellt :
>  
>
> [mm]\bruch{3}{x-2}[/mm]
>
> Da [mm]\bruch{3}{x}[/mm] gegen Null strebt müsste doch
> [mm]\bruch{3}{x-2}[/mm] gegen -2 streben, oder sehe ich das Falsch?
>  Dann liegt meine waagerechte Asymptote bei -2.
>  


Asymptoten hast hier nur, wenn [mm]x \to \infty, \ x \to -\infty, \ x \to 2[/mm]

Waagrechte Asymptoten hast Du für [mm]x \to \infty, \ x \to -\infty[/mm]

Eine senkrechte Asymptote ergibt sich, wenn [mm] x \to 2[/mm].


> Zur Kontrolle habe ich dass mal in einen grafischen
> Taschenrechner eingegeben und der sieht das wohl auch so.
>  
> Wenn ich nun aber für x beliebige Werte einsetze
> (Wertetabelle)  komme ich auf andere Ergebnisse als in
> diesem Graphen. Was mache ich nur falsch, welcher
> denkfehler hat sich eingeschlichen.
>  
> So müsste laut Graph der y-wert irgenddwo bei -1,4 liegen


Dann lautet der Graph so: [mm]f\left(x\right)=\bruch{3}{x}-2[/mm]


> wenn ich für x = 5 einsetzte. Setzte ich 5 in meine
> Gleichung ein komme ich auf 1.


Hier hast Du diesen Graph verwendet: [mm]\bruch{3}{x-2}[/mm]


>  Irgendwo begehe ich einen (höchstwahrscheinlich einfahcen
> ) Denkfehler.

>

> Für jeden Hinweis bin ich dankbar.
>  So und nun gehe ich frustriert ins Bett.
>  Danke euch im Voraus


Gruss
MathePower

Bezug
                
Bezug
Asymptoten: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:28 Fr 13.07.2012
Autor: Windbeutel

Danke dir, so ganz steige ich bei den Asymptoten zwar noch nicht durch, aber langsam wirds.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de