www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Asymptotengleichungen bestimme
Asymptotengleichungen bestimme < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Asymptotengleichungen bestimme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:53 Mi 05.07.2006
Autor: kahnathan

Aufgabe
Für die Funktion  f(x) = x ln(e+ 1/x ) bestimme man den Definitions-
bereich und die Asymptotengleichung.

wie kann ich denn nun die Asymptotengleichung für diese Funktion ermitteln? mir fehlt leider völlig der Ansatz!
Wäre auch nett, wenn mir jemand die allgemeine Vorgehensweise verraten könnte.
vielen dank schonmal
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Asymptotengleichungen bestimme: Funktion unklar
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:59 Mi 05.07.2006
Autor: Roadrunner

Hallo kahnathan,

[willkommenmr] !!


Wie lautet denn Deine Funktionsvorschrift?

$f(x) \ = \ [mm] x*\ln\left(\bruch{e+1}{x}\right)$ [/mm]     oder     $f(x) \ = \ [mm] x*\ln\left(e+\bruch{1}{x}\right)$ [/mm]


Gruß vom
Roadrunner


Bezug
        
Bezug
Asymptotengleichungen bestimme: Antwort
Status: (Antwort) fertig Status 
Datum: 12:38 Mi 05.07.2006
Autor: Zwerglein

Hi, kahnathan,
(lehmanngeschädigt?)

> Für die Funktion  f(x) = x ln(e+ 1/x ) bestimme man den
> Definitions-
>  bereich und die Asymptotengleichung.
>  wie kann ich denn nun die Asymptotengleichung für diese
> Funktion ermitteln? mir fehlt leider völlig der Ansatz!

Nun, zunächst mal hast Du ja (hoffentlich) die Definitionsmenge ermittelt.
Dann hast Du ja 2 "Ränder" erhalten, nämlich x=0 und [mm] x=-\bruch{1}{e}. [/mm]
Mit Hilfe der entsprechenden Grenzwertrechnung erkennst Du, dass es bei
[mm] x=-\bruch{1}{e} [/mm] eine senkrechte Asymptote gibt.

Der Rest meiner Ausführungen ist leider etwas umständlich - ich weiß nicht, ob's einfacher geht!  

Wenn Du [mm] \limes_{x\rightarrow\infty} ln(e+\bruch{1}{x}) [/mm] = 1 berechnest, kommst Du vielleicht auf die Idee, dass es für den Graphen Deiner Funktion f eine schiefe Asymptote mit der Gleichung y=x+c geben könnte.
Wenn Du dann
[mm] \limes_{x\rightarrow\infty} (x*ln(e+\bruch{1}{x})-x) [/mm] berechnest, erhältst Du einen "Hinweis" auf die Konstante c.

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de