www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Asymtotische Gleichheit von Fu
Asymtotische Gleichheit von Fu < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Asymtotische Gleichheit von Fu: Wie kann man das nachweisen?
Status: (Frage) beantwortet Status 
Datum: 19:59 Sa 30.01.2010
Autor: isi1

Aufgabe
In der Elektrotechnik bekommen wir für eine kreisförmige Platte (Radius R) entlang ihrer Achse eine Funktion für das Potential $ [mm] \varphi/\varphi_0=\sqrt(z'^2+1)-1 [/mm] $
Das Potential für eine punktförmige Ladung muss bei Abständen >> R (fast) damit übereinstimmen. $ [mm] \varphi/\varphi_0=1/(2z') [/mm] $
Zeigen Sie mathematisch, dass die beiden Funktionen bei z'>>1 asymptotisch gleich sind.


Könnte mir bitte jemand helfen?

Die beiliegende Grafik habe ich selbst erstellt.
[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Asymtotische Gleichheit von Fu: Antwort
Status: (Antwort) fertig Status 
Datum: 21:40 Sa 30.01.2010
Autor: leduart

Hallo
irgendwas hast du da falsch abgeschrieben.
[mm] \wurzel{x^2+1}-1 [/mm] ist ne wachsende fkt, die sicher nicht für grosse x gegen 1/2x konvergiert. es ist auch nicht die fkt die man auf der Graphik sieht
am ehesten gehts noch mit
[mm] \wurzel{1/x^2+1}-1 [/mm]  dann nimm einfach ddas Taylorpolynom um 0 (bis zum 1. Glied, also 1. Ableitung.) für [mm] \wurzel{u+1} [/mm] mit [mm] u=1/x^2 [/mm]
Gruss leduart

Bezug
        
Bezug
Asymtotische Gleichheit von Fu: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:04 Sa 30.01.2010
Autor: isi1

Danke leduart, jetzt ist alles klar.

Entschuldigt bitte, es war ein schlichter Schreibfehler von mir:

φ/φ0=√(z'^2+1) -z' soll es heißen, nicht φ/φ0=√(z'^2+1) - 1

Dann klappts auch mit der Annäherung.

$ [mm] \frac{\varphi}{\varphi_0}=\sqrt{z'^2+1} [/mm] -z' $

$ [mm] \frac{\varphi}{\varphi_0}=z' *\left( \sqrt{1+\frac{1}{z'^2}} -1\right) [/mm] $

$ [mm] \sqrt{1+\frac{1}{x^2}} [/mm] = 1 + [mm] \frac{1}{2x^2} [/mm] - [mm] \frac{1}{8x^4} [/mm] + ... $

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de