www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Auf Kreisgleichung prüfen
Auf Kreisgleichung prüfen < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Auf Kreisgleichung prüfen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:53 Sa 11.11.2006
Autor: kingkong

Aufgabe
1) [mm] x^2+y^2-5*x+8*y=22 [/mm]
2) [mm] 2*x^2-3*y^2+8*x-6*y=44 [/mm]
3) [mm] 6*x^2+2*y^2-9*x+7*y=88 [/mm]

Prüfen auf Kreisgleichung und Angabe Pm (Cm;Dm)

Hallo!
Also wir haben im Unterricht bereits eine solche Prüfung behandelt. Die Aufgaben die wir behandelt haben warn nach dem Muster von 1). Das allgemeine Prinzip wie ich eine solche Aufgabe lösen kann habe ich verstanden nur weiß ich nicht wie ich mit 2) und 3) umgehen soll. Da stehen ja vor den [mm] x^2 [/mm] und [mm] y^2 [/mm] noch Zahlen die erstmal weg müssen, oder? Wie sehen die ersten Rechenschritte bei 2) und 3) aus?


Danke

        
Bezug
Auf Kreisgleichung prüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:08 Sa 11.11.2006
Autor: galileo

Hi kingkong

> 1) [mm]x^2+y^2-5*x+8*y=22[/mm]
>  2) [mm]2*x^2-3*y^2+8*x-6*y=44[/mm]
>  3) [mm]6*x^2+2*y^2-9*x+7*y=88[/mm]
>  
> Prüfen auf Kreisgleichung und Angabe Pm (Cm;Dm)
> Wie sehen die ersten Rechenschritte bei 2) und 3) aus?

Lösung 2)

Du musst die Gleichung in einer Form bringen, wo du erkennst was für ein Kegelschnitt das ist. Diese Form ist:

[mm] \bruch{(x-x_0)^2}{a^2}\pm \bruch{(y-y_0)^2}{b^2}=1 [/mm]

Wenn das Zeichen + ist ist es eine Ellipse, bei -, eine Hyperbel.
Der Kreis ist eine Ellipse mit a = b.

[mm] 2*x^2-3*y^2+8*x-6*y=44\quad\gdw\quad 2(x^2+4x)-3(y^2+2y)=44\quad\gdw\quad 2(x^2+2*2*x+2^2)-3(y^2+2*1*y+1^2)=44+2*2^2-3*1^2 [/mm]
[mm] 2(x+2)^2-3(y+1)^2=44+8-3\quad\gdw\quad \bruch{(x+2)^2}{\bruch{49}{2}}-\bruch{(y+1)^2}{\bruch{49}{3}}=1 [/mm]

Das ist die Gleichung einer Hyperbel.

Versuche Punkt 3) alleine zu lösen! Wenn das nicht klappt, frage bitte nochmal.

Viele Grüße,
galileo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de