www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Aufgabe3
Aufgabe3 < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe3: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:51 So 22.05.2011
Autor: antoniolopez20

Aufgabe
Aufgabe 3
a) Zeigen Sie, dass die Abbildung f : ℝ²--> ℝ² mit f (x , y ) = (x + 2 y , x − 2 y ) bijektiv
ist und bestimmen Sie ihre Umkehrabbildung.

Hallo,

Also so eine Funktion wie sie oben steht sehe ich zum ersten Mal.

wie kann ich dieses "," deuten?

Sind das zwei Funktionen?

Eine weitere Frage zur Bijektivität.

Jedes Element aus x hat genau einen y wert und jedes y-wert hat genau einen x Wert ist das so richtig formuliert.


Danke

        
Bezug
Aufgabe3: Antwort
Status: (Antwort) fertig Status 
Datum: 22:57 So 22.05.2011
Autor: kamaleonti

Moin,
> Aufgabe 3
>  a) Zeigen Sie, dass die Abbildung f : [mm] \IR^2\to \IR^2 [/mm] mit f(x,y)=(x+2y,x−2y) bijektiv  ist und bestimmen Sie ihre Umkehrabbildung.
>  Hallo,
>  
> Also so eine Funktion wie sie oben steht sehe ich zum
> ersten Mal.
>  
> wie kann ich dieses "," deuten?

Es ist eine Funktion, die in den [mm] \IR^2 [/mm] abbildet. Entsprechend hat jedes Bild eines Vektors zwei Komponenten.

>  
> Sind das zwei Funktionen?

Es sind zwei Komponentenfunktionen.

>  
> Eine weitere Frage zur Bijektivität.
>  
> Jedes Element aus x hat genau einen y wert und jedes y-wert
> hat genau einen x Wert ist das so richtig formuliert.

Du meinst das Richtige, aber exakt formuliert ist das nicht.

f: [mm] X\to [/mm] Y ist bijektiv: Zu jedem [mm] x\in [/mm] X gibt es genau ein [mm] y\in [/mm] Y mit f(x)=y und zu jedem [mm] y\in [/mm] Y gibt es genau ein [mm] x\in [/mm] X mit [mm] f^{-1}(y)=x [/mm]

>  
>
> Danke  

LG

Bezug
                
Bezug
Aufgabe3: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:09 So 22.05.2011
Autor: antoniolopez20

Danke für die schnelle Antwort.

Ich weiß wie man die Umkehrfunktion einer "normalen" funktion bildet.

Man vertauscht x undy und  lößt es nach y auf.

Ich weiß hier nicht wie ich damit rechnen kann, genauer gesagt die Umkehrfunktion bilden kann, kann mir jemand tipps geben?

Bezug
                        
Bezug
Aufgabe3: Antwort
Status: (Antwort) fertig Status 
Datum: 23:14 So 22.05.2011
Autor: kamaleonti


> Danke für die schnelle Antwort.
>  
> Ich weiß wie man die Umkehrfunktion einer "normalen"
> funktion bildet.
>  
> Man vertauscht x undy und  lößt es nach y auf.
>  
> Ich weiß hier nicht wie ich damit rechnen kann, genauer
> gesagt die Umkehrfunktion bilden kann, kann mir jemand
> tipps geben?

Tipps:

(1)              [mm] \frac{(x+2y)+(x-2y)}{2}=x [/mm]

(2)              [mm] \frac{(x+2y)-(x-2y)}{4}=y [/mm]

LG

Bezug
                                
Bezug
Aufgabe3: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:57 So 22.05.2011
Autor: antoniolopez20

Vielen Dank für deine Tipps

Leider weiß ich immer noch nicht weiter, wie kommst du auf die Zahlen?

Hast du dir einfach überlegt was du mit (x+2y) und (x-2y) damit du einmal auf x und einmal auf y kommst?



Bezug
                                        
Bezug
Aufgabe3: Antwort
Status: (Antwort) fertig Status 
Datum: 00:03 Mo 23.05.2011
Autor: kamaleonti


> Vielen Dank für deine Tipps
>  
> Leider weiß ich immer noch nicht weiter, wie kommst du auf
> die Zahlen?
>  
> Hast du dir einfach überlegt was du mit (x+2y) und (x-2y)
> damit du einmal auf x und einmal auf y kommst?

Richtig. Genau das brauchst du ja für die Umkehrfunktion g, die die Abbildung f wieder rückgängig machen soll. Du musst nur noch die Funktion hinschreiben:

            $f(x,y)=(x+2y,x-2y)$

            [mm] $g(x,y)=\left(\frac{x+y}{2}, \frac{x-y}{4}\right)$ [/mm]

>  
>  

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de