www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Aufgabe Logarithmus 1
Aufgabe Logarithmus 1 < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe Logarithmus 1: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:34 Fr 26.12.2008
Autor: nerif

Aufgabe
Löse die folgenden Gleichungen:
a) [mm] log_{2}(x-2) [/mm] + [mm] log_{2}(x) [/mm] = [mm] log_{2}3 [/mm]
b) [mm] log_{3}(x+1) [/mm] = 1

Wie löse ich die Aufgaben? Es sind zwar grad Ferien, aber ich möcht schonmal ein wenig vorarbeiten... kann mir jemand helfen ? =)





Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Aufgabe Logarithmus 1: Antwort
Status: (Antwort) fertig Status 
Datum: 17:56 Fr 26.12.2008
Autor: Al-Chwarizmi

hallo nerif,

> Löse die folgenden Gleichungen:

>  a) [mm]log_{2}(x-2)[/mm] + [mm]log_{2}(x)[/mm] = [mm]log_{2}(3)[/mm]

Es sind nur Logarithmen zur Basis 2 vorhanden.
Dann gilt:

       [mm]log_{2}(x-2)[/mm] + [mm]log_{2}(x)[/mm] = [mm]log_{2}((x-2)*x)[/mm]

Dies soll gleich [mm] \log_2(3) [/mm] sein. Dann müssen auch
$\ (x-2)*x$ und $3$ übereinstimmen. Dies führt auf eine
Gleichung für x. Vergiss am Schluss nicht, zu
überprüfen, ob die gefundenen x-Werte die
gegebene Gleichung auch tatsächlich erfüllen.

>  b) [mm]log_{3}(x+1) = 1[/mm]

Tipp:  es gibt nur eine Zahl, die bezüglich
der Basis $\ 3$ den Logarithmuswert $\ 1$ hat !


LG


Bezug
                
Bezug
Aufgabe Logarithmus 1: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:09 Sa 27.12.2008
Autor: nerif

also kann ich mir merken,

wenn alle glieder in einer gleichund den selben logarithmus haben, kann ich diesen quasi rausstreichen ?


[mm] log_{3}(x+1) [/mm] = 1

stimmt x kann ja eigentlich nur -1 sein, aber kann man da nich noch irgendwsa vorher umstellen und so ??

Bezug
                        
Bezug
Aufgabe Logarithmus 1: Antwort
Status: (Antwort) fertig Status 
Datum: 00:19 Sa 27.12.2008
Autor: M.Rex

Hallo

> also kann ich mir merken,
>
> wenn alle glieder in einer gleichund den selben logarithmus
> haben, kann ich diesen quasi rausstreichen ?

Fast, das geht nur, wenn bei beiden der Logarithmus als letztes steht, also aus [mm] log_{b}\left(\bruch{\Box}{\otimes}\right)=log_{b}(\odot) [/mm]
folgt durch [mm] "b^{...}" [/mm] auf beiden Seiten:
[mm] \bruch{\Box}{\otimes}=\odot [/mm]


>  
>
> [mm]log_{3}(x+1)[/mm] = 1
>  
> stimmt x kann ja eigentlich nur -1 sein, aber kann man da
> nich noch irgendwsa vorher umstellen und so ??

Hier wende auf beide Seiten [mm] 3^{...} [/mm] an:

[mm] log_{3}(x+1)=1 [/mm]
[mm] \gdw 3^{log_{3}(x+1)}=3^{1} [/mm]
^Da [mm] log_{3} [/mm] und [mm] 3^{...} [/mm] Umkehrfunktionen sind (vergleichbar mit [mm] \wurzel{x²}=x [/mm] ) [mm] gilt:\gdw 3^{log_{3}(x+1)}=x+1 [/mm]

Also:
[mm] 3^{log_{3}(x+1)}=3^{1} [/mm]
[mm] \gdw{x+1=3} [/mm]
[mm] \gdw{x=...} [/mm]

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de