Aufgabe,Satz von Liouville < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:00 Mo 22.06.2009 | Autor: | Mathec |
Aufgabe | Sei f eine holomorphe Funktion auf ganz [mm] \IC [/mm] und es gelte f(z)=f(z+1)=f(z+i) für alle z aus [mm] \IC. [/mm] Wie verhält sich die Funktion f? |
Hallo!
Bei der obigen Aufgabe komme ich nicht richtig voran. Als Tipp war gegeben,dass man den Satz von Liouville anwenden muss und somit zeigen kann, dass die Funktion konstant ist. Zu den Voraussetzungen des Satzes: Holomorphie auf ganz [mm] \IC [/mm] ist ja schonmal gut. Ich habe aber keine Idee,wie ich zeigen kann, dass die Funktion beschränkt ist! Ich habe mir aber überlegt,dass ich die Funktion lokal um 0 in eine Potenzreihe entwickeln kann: [mm] f(z)=\summe_{i=1}^{\infty}\bruch{f^{(n)}(0)}{n!}z^n. [/mm] Wenn ich in diese Potenzreihe nun z, z+1,z+i einsetze und dann explizit aufschreibe, muss (damit Gleichheit gilt) jedes [mm] a_{n}, [/mm] für n [mm] \ge1 [/mm] 0 sein, und man sieht daran, dass f konstant [mm] a_{0} [/mm] sein muss...
Wie aber zeige ich das jetzt geschickter mit dem Satz von Liouville?? Wie kann ich also die Beschränktheit zeigen, aus der dann die Konstanz folgt???
Danke schonmal für eure Hilfe!!!!
Viele Grüße
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:19 Mo 22.06.2009 | Autor: | rainerS |
Hallo!
> Sei f eine holomorphe Funktion auf ganz [mm]\IC[/mm] und es gelte
> f(z)=f(z+1)=f(z+i) für alle z aus [mm]\IC.[/mm] Wie verhält sich die
> Funktion f?
> Hallo!
> Bei der obigen Aufgabe komme ich nicht richtig voran. Als
> Tipp war gegeben,dass man den Satz von Liouville anwenden
> muss und somit zeigen kann, dass die Funktion konstant ist.
> Zu den Voraussetzungen des Satzes: Holomorphie auf ganz [mm]\IC[/mm]
> ist ja schonmal gut. Ich habe aber keine Idee,wie ich
> zeigen kann, dass die Funktion beschränkt ist! Ich habe mir
> aber überlegt,dass ich die Funktion lokal um 0 in eine
> Potenzreihe entwickeln kann:
> [mm]f(z)=\summe_{i=1}^{\infty}\bruch{f^{(n)}(0)}{n!}z^n.[/mm] Wenn
> ich in diese Potenzreihe nun z, z+1,z+i einsetze und dann
> explizit aufschreibe, muss (damit Gleichheit gilt) jedes
> [mm]a_{n},[/mm] für n [mm]\ge1[/mm] 0 sein, und man sieht daran, dass f
> konstant [mm]a_{0}[/mm] sein muss...
> Wie aber zeige ich das jetzt geschickter mit dem Satz von
> Liouville?? Wie kann ich also die Beschränktheit zeigen,
> aus der dann die Konstanz folgt???
Die Funktion ist nach Voraussetzung doppelt periodisch, also ist sie durch ihre Werte im dem Quadrat
[mm] \{ z=(x,y) \in \IC \mid 0\le x \le 1, 0\le y \le1 \} [/mm]
mit den Ecken im Ursprung und in (1,i) vollständig bestimmt. Insbesondere ist sie in ganz [mm] $\IC$ [/mm] beschränkt, wenn sie in diesem Quadrat beschränkt ist.
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:03 Di 23.06.2009 | Autor: | Mathec |
Hallo!
Vielen Dank für die Antwort, Idee dahinter ist nun klar!!
Vielen Dank!!
Mathec
|
|
|
|