www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Aufgabe zu AN 2
Aufgabe zu AN 2 < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe zu AN 2: Fourierreihen
Status: (Frage) überfällig Status 
Datum: 13:15 Mo 18.04.2011
Autor: Monoid

Aufgabe
Seien [mm] J\subseteqN [/mm] und [mm] (f_j) [/mm] mit j Element J ein ONS im linearen Raum (V,[.,.]) der [mm] 2\pi-periodischen [/mm] Regelfunktionen [mm] f:\IR\to\IC. [/mm]
zz [mm] (f_j) [/mm] ist genau dann vollständig, wenn für alle Funktionen f,g Element V die Gleichung: [mm] \summe_{j Element J}^{}c_j*d_j=[f,g] [/mm] gilt.
Hinweis: [mm] d_j [/mm] ist periodisch und ONS = Orthonormalsystem
Dabei sind [mm] c_j=[f,f_j] [/mm] und [mm] d_j=[g,f_j] [/mm] die Fourierkoeffizienten von f bzw. von g.

Hallo Community,

Ich würde bei so einer Aufgabe erst mal die Konvergenz zeigen wollen.  Da wir noch keine VL zur Fourieranalysis hatten, bin ich jedoch mir nicht sicher beim Vorgang. Wenn ich die Literatur dazu richtig verstanden habe, soll ich links/rechts ableiten (=partiell?) und die Reihe konvergiert dann gegen das (arithmetische) Mitte. Soweit richtig?

        
Bezug
Aufgabe zu AN 2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:10 Mo 18.04.2011
Autor: gfm


> Seien [mm]J\subseteqN[/mm] und [mm](f_j)[/mm] mit j Element J ein ONS im
> linearen Raum (V,[.,.]) der [mm]2\pi-periodischen[/mm]
> Regelfunktionen [mm]f:\IR\to\IC.[/mm]
> zz [mm](f_j)[/mm] ist genau dann vollständig, wenn für alle
> Funktionen f,g Element V die Gleichung: [mm]\summe_{j Element J}^{}c_j*d_j=[f,g][/mm]
> gilt.
>  Hinweis: [mm]d_j[/mm] ist periodisch und ONS = Orthonormalsystem
>  Dabei sind [mm]c_j=[f,f_j][/mm] und [mm]d_j=[g,f_j][/mm] die
> Fourierkoeffizienten von f bzw. von g.
>  Hallo Community,
>  
> Ich würde bei so einer Aufgabe erst mal die Konvergenz
> zeigen wollen.  Da wir noch keine VL zur Fourieranalysis
> hatten, bin ich jedoch mir nicht sicher beim Vorgang. Wenn
> ich die Literatur dazu richtig verstanden habe, soll ich
> links/rechts ableiten (=partiell?) und die Reihe
> konvergiert dann gegen das (arithmetische) Mitte. Soweit
> richtig?

Ist schon lange her, aber bei

[mm]\summe_j=[/mm]

muss ich an Parseval denken.

Wenn die [mm] f_j [/mm] ein VONS sind, wird man zeigen müssen, dass


[mm]<\summe_i f_i|\summe_k f_k>[/mm]


durch Herausziehen der Summen und Ausnutzen der Orthonormaleigenschaft der obigen linken Seite entspricht.

Und wenn anders herum obige Gleichung für alle [mm] f [/mm] und [mm] g [/mm] gilt, muss man damit ebenso zeigen, dass


[mm]||g-\summe_i f_i||^2=f_j|g-\summe_k f_k>[/mm]


verschwindet.

LG

gfm

Bezug
                
Bezug
Aufgabe zu AN 2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:03 So 24.04.2011
Autor: Monoid

Das ist sicherlich ein hilfreicher Hinweis, leider zu knapp für mich... Eine etwas ausführliche Erklärung würde mir sehr helfen.

Bezug
        
Bezug
Aufgabe zu AN 2: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Mo 02.05.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de