www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Steckbriefaufgaben" - Aufgabe zu Funktionssteckbrief
Aufgabe zu Funktionssteckbrief < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe zu Funktionssteckbrief: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:10 Fr 28.04.2006
Autor: Bohrkonstriktor

Aufgabe
Von den Funktionen der Form f(x) = a*sinx + b*cosx ist diejenige zu bestimmen, die den HOP H [mm] (2*\pi/3 [/mm] | 2) hat

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Um die Aufgabe zu lösen brauche ich doch zwei Bedingungen.

1. [mm] f'(2*\pi/3) [/mm] = 0

2. f [mm] (2*\pi/3) [/mm] = 2

Nachdem man eingesetzt  hat erhält man ja zwei gleichungen mit 2 unbekannten, die man dann mit einem gleichungssystem (gauß-verfahren) lösen muss oder? mein problem ist, das ich da nicht weiterkomm. Hab ich vielleicht schon einen Fehler in meinem Ansatz?

        
Bezug
Aufgabe zu Funktionssteckbrief: Antwort
Status: (Antwort) fertig Status 
Datum: 18:32 Fr 28.04.2006
Autor: Disap

Hallo Bohrkonstriktor, [willkommenmr]

> Von den Funktionen der Form f(x) = a*sinx + b*cosx ist
> diejenige zu bestimmen, die den HOP H [mm](2*\pi/3[/mm] | 2) hat
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Um die Aufgabe zu lösen brauche ich doch zwei Bedingungen.

[ok] genau so ist es.

> 1. [mm]f'(2*\pi/3)[/mm] = 0

[ok]  

> 2. f [mm](2*\pi/3)[/mm] = 2

[ok]  

> Nachdem man eingesetzt  hat erhält man ja zwei gleichungen
> mit 2 unbekannten, die man dann mit einem gleichungssystem
> (gauß-verfahren) lösen muss oder? mein problem ist, das ich

Z. B. mit dem gauß-Verfahren, ja.

> da nicht weiterkomm. Hab ich vielleicht schon einen Fehler
> in meinem Ansatz?

Nö, der Ansatz ist richtig.

$f(x) = a*sin(x) + b*cos(x)$

$f'(x) = a*cos(x) - b*sin(x)$

das bedeutet

1. $0 = [mm] a*cos(\frac{2*\pi}{3}) [/mm] - [mm] b*sin(\frac{2*\pi}{3})$ [/mm]

2. $2 = [mm] a*sin(\frac{2*\pi}{3}) [/mm] + [mm] b*cos(\frac{2*\pi}{3})$ [/mm]

Wenn wir daraus nun die entsprechenden Werte errechnen, ergibt sich

1. $0 = a*(-0.5) - [mm] b*(\frac{\wurzel{3}}{2})$ [/mm]

2. $2 = [mm] a*(\frac{\wurzel{3}}{2}) [/mm] + b*(-0.5) $

Das musst du jetzt nur noch lösen, ich würde statt gaußen das Einsetzungsverfahren nehmen, d. h. die erste Gleichung nach a umstellen und in die zweite einsetzen.

Reicht dir das als Tipp?

LG
Disap

Bezug
                
Bezug
Aufgabe zu Funktionssteckbrief: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:58 Fr 28.04.2006
Autor: Bohrkonstriktor

Dann war soweit alles richtig und ich bin nur nicht mit dem gaußverfahren weitergekommen, aber jetzt hab ich es nach a aufgelöst und ich hab die richtigen ergebnisse rausbekommen. Dankeschön für deine schnelle, hilfreiche Antwort, lg Bohrkonstriktor

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de