Aufgabe zur Aussagenlogik < Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Aufgabe | [m]Pf[/m] sei die Menge der perfekten Zahlen und ist definiert als [m]Pf := \left\{ \ n \in \IN \ | \ n = \summe_{i|n, i\not=n}^{} i \ \right\}[/m].
a) Geben Sie in Worten an, wie die obige Definition von [m]Pf[/m] gelesen wird.
Geben Sie außerdem eine dazu äquivalente Kurzsprechweise an.
b) Weisen Sie nach: [m]Pf \not= \emptyset[/m].
c) Weisen Sie nach: [m]n \in Pf \Leftrightarrow 2n = \summe_{i|n}^{} i [/m] |
Hallo zusammen.
Hier mein Lösungsvorschlag:
a) [m]Pf[/m] ist definiert als die Menge aller [m]n[/m] in [m]\IN[/m] ([m]\IN[/m] ist die Menge der natürlichen Zahlen), für die gilt:
[m]n[/m] ist gleich der Summe über [m]i[/m] mit [m]i[/m] teilt [m]n[/m] (bzw. [m]i[/m] ist Teiler von [m]n[/m]) und [m]i[/m] ist ungleich [m]n[/m].
Äquivalente Kurzsprechweise:
Die Menge der perfekten Zahlen [m]Pf[/m] gibt die Summe der Teiler einer beliebigen natuerlichen Zahl wieder,
wobei jede natürliche Zahl [m]n[/m] sich nicht selbst teilt (da lt. Vor. [m]i \not= n[/m] gelten muss).
b) Zu zeigen ist, dass [m]Pf[/m] ungleich der leeren Menge ist.
Für alle [m]i[/m] muss gelten: [m]i \in \IN[/m], da Teiler per definitionem natürliche Zahlen sind.
Begründung: Da jede natürliche Zahl [m]n \in \IN[/m] den Teiler mit [m]i = 1[/m] hat, muss [m]Pf \not= \emptyset[/m] für alle [m]n \in \IN[/m] gelten,
da es kein [m]n \in \IN[/m] gibt, welches die Aussageform [m]n = \summe_{i|n, i \not= n}^{}i[/m] falsch werden lässt (außer [m]n=1[/m], da dann [m]1\not=1[/m] ist wegen der Bedingung [m]i\not=n[/m] ?).
c) Es handelt sich um eine Biimplikation, also eine logische Äquivalenz, d.h. es ist zu zeigen, dass [m]n \in Pf \Rightarrow 2n = \summe_{i|n}{} i \wedge 2n = \summe_{i|n}{} i \Rightarrow n \in Pf[/m] für alle [m]n \in \IN[/m] gilt. Um zu zeigen, dass eine Aussage wahr ist, reichen 1000 Beispiele nicht aber wird gezeigt, dass die Negation der Aussage falsch ist, so muss die ursprüngliche Aussage wahr sein.
Somit bilde ich zunächst die Negation der ersten o.g. Implikation:
[m]\neg(n \in Pf \Rightarrow 2n = \summe_{i|n}{} i) \Leftrightarrow n \in Pf \wedge 2n \not= \summe_{i|n}{} i \Leftrightarrow n = \summe_{i|n, i\not=n}^{} i \wedge 2n \not= \summe_{i|n}{} i[/m]
Sei nun [m]n = 3[/m].
Für [m]3 \in Pf[/m] gilt dann: [m]n = 1[/m] da [m]i|n = 1|3[/m] und [m]3 \not| 3[/m] gilt wegen [m]i \not= n[/m].
Für [m]2n = \summe_{i|n}{} i[/m] gilt: [m]2n = 4[/m] wegen [m]i|n=1|3[/m] und [m]3|3[/m], also [m]2n = 1+3 \Leftrightarrow 2n = 4 \Leftrightarrow n = 2 [/m].
Also steht da am Ende: [m]n=1[/m] und [m]n\not=2[/m], was aber wahr, somit wäre die Negation wahr, das passt nicht...
Dasselbe für die Negation der zweiten o.g. Implikation:
[m]\neg(2n = \summe_{i|n}{} i \Rightarrow n \in Pf) \Leftrightarrow 2n = \summe_{i|n}{} i \wedge n \not\in Pf[/m]
Kann mir jemand weiterhelfen bzw. mir Tipps geben?
Danke im voraus!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:16 Do 25.09.2014 | Autor: | abakus |
> [mm]Pf[/mm] sei die Menge der perfekten Zahlen und ist definiert als
> [mm]Pf := \left\{ \ n \in \IN \ | \ n = \summe_{i|n, i\not=n}^{} i \ \right\}[/mm].
>
> a) Geben Sie in Worten an, wie die obige Definition von [mm]Pf[/mm]
> gelesen wird.
> Geben Sie außerdem eine dazu äquivalente Kurzsprechweise
> an.
>
> b) Weisen Sie nach: [mm]Pf \not= \emptyset[/mm].
>
> c) Weisen Sie nach: [mm]n \in Pf \Leftrightarrow 2n = \summe_{i|n}^{} i[/mm]
>
> Hallo zusammen.
>
> Hier mein Lösungsvorschlag:
>
> a) [mm]Pf[/mm] ist definiert als die Menge aller [mm]n[/mm] in [mm]\IN[/mm] ([mm]\IN[/mm] ist
> die Menge der natürlichen Zahlen), für die gilt:
> [mm]n[/mm] ist gleich der Summe über [mm]i[/mm] mit [mm]i[/mm] teilt [mm]n[/mm] (bzw. [mm]i[/mm] ist
> Teiler von [mm]n[/mm]) und [mm]i[/mm] ist ungleich [mm]n[/mm].
>
> Äquivalente Kurzsprechweise:
> Die Menge der perfekten Zahlen [mm]Pf[/mm] gibt die Summe der
> Teiler einer beliebigen natuerlichen Zahl wieder,
> wobei jede natürliche Zahl [mm]n[/mm] sich nicht selbst teilt (da
> lt. Vor. [mm]i \not= n[/mm] gelten muss).
Hallo,
letztere ist falsch formuliert. Es ist nun mal so, dass jede natürliche Zahl n auch sich selbst teilt
!
Es geht einfach nur um die Zahlen n, die gleich der Summe all ihrer eigenen Teiler mit Ausnahme von n sind.
> b) Zu zeigen ist, dass [mm]Pf[/mm] ungleich der leeren Menge ist.
> Für alle [mm]i[/mm] muss gelten: [mm]i \in \IN[/mm], da Teiler per
> definitionem natürliche Zahlen sind.
> Begründung: Da jede natürliche Zahl [mm]n \in \IN[/mm] den Teiler
> mit [mm]i = 1[/mm] hat, muss [mm]Pf \not= \emptyset[/mm] für alle [mm]n \in \IN[/mm]
> gelten,
> da es kein [mm]n \in \IN[/mm] gibt, welches die Aussageform [mm]n = \summe_{i|n, i \not= n}^{}i[/mm]
> falsch werden lässt (außer [mm]n=1[/mm], da dann [mm]1\not=1[/mm] ist wegen
> der Bedingung [mm]i\not=n[/mm] ?).
Du denkst viel zu kompliziert. Die Menge ist nicht leer, wenn sich z.B. durch Angabe eines Beispiels mindestens ein Element (ich habe z.B. eine einstellige Zahl gefunden) konkret angeben lässt.
Gruß Abakus
>
> c) Es handelt sich um eine Biimplikation, also eine
> logische Äquivalenz, d.h. es ist zu zeigen, dass [mm]n \in Pf \Rightarrow 2n = \summe_{i|n}{} i \wedge 2n = \summe_{i|n}{} i \Rightarrow n \in Pf[/mm]
> für alle [mm]n \in \IN[/mm] gilt. Um zu zeigen, dass eine Aussage
> wahr ist, reichen 1000 Beispiele nicht aber wird gezeigt,
> dass die Negation der Aussage falsch ist, so muss die
> ursprüngliche Aussage wahr sein.
>
> Somit bilde ich zunächst die Negation der ersten o.g.
> Implikation:
> [mm]\neg(n \in Pf \Rightarrow 2n = \summe_{i|n}{} i) \Leftrightarrow n \in Pf \wedge 2n \not= \summe_{i|n}{} i \Leftrightarrow n = \summe_{i|n, i\not=n}^{} i \wedge 2n \not= \summe_{i|n}{} i[/mm]
>
> Sei nun [mm]n = 3[/mm].
> Für [mm]3 \in Pf[/mm] gilt dann: [mm]n = 1[/mm] da [mm]i|n = 1|3[/mm]
> und [mm]3 \not| 3[/mm] gilt wegen [mm]i \not= n[/mm].
> Für [mm]2n = \summe_{i|n}{} i[/mm]
> gilt: [mm]2n = 4[/mm] wegen [mm]i|n=1|3[/mm] und [mm]3|3[/mm], also [mm]2n = 1+3 \Leftrightarrow 2n = 4 \Leftrightarrow n = 2 [/mm].
>
> Also steht da am Ende: [mm]n=1[/mm] und [mm]n\not=2[/mm], was aber wahr,
> somit wäre die Negation wahr, das passt nicht...
>
> Dasselbe für die Negation der zweiten o.g. Implikation:
> [mm]\neg(2n = \summe_{i|n}{} i \Rightarrow n \in Pf) \Leftrightarrow 2n = \summe_{i|n}{} i \wedge n \not\in Pf[/mm]
>
>
> Kann mir jemand weiterhelfen bzw. mir Tipps geben?
>
> Danke im voraus!
|
|
|
|
|
Sorry, das hilft mir nicht so richtig weiter.
Kannst Du es evtl. etwas weiter ausführen?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:35 Do 25.09.2014 | Autor: | abakus |
> Sorry, das hilft mir nicht so richtig weiter.
> Kannst Du es evtl. etwas weiter ausführen?
Wie wäre es denn, wenn du der Reihe nach für jede einstellige Zahl die Summe ihrer Teiler (außer der jeweiligen Zahl selbst) bildest und nachschaust, ob diese Summe gleich der Zahl ist?
Das ist eine Arbeit von nicht mal zwei Minuten.
Gruß Abakus
|
|
|
|
|
Hallo zusammen.
Ok, ich bestimme jeweils die Menge [m]Pf[/m] für die einstelligen [m]n \in \IN[/m], also [m]n=1 \cdots 9[/m]:
[m]n = 1 \Rightarrow Pf = \emptyset[/m], da [m]1 \nmid 1[/m] wegen [m]i \nmid n[/m]
[m]n = 2 \Rightarrow Pf = \{ 1 \}[/m], da [m]n = 1 \mid 2 + 2 \nmid 2 = 1[/m]
[m]n = 3 \Rightarrow Pf = \{ 1 \}[/m], da [m]n = 1 \mid 3 + 2 \nmid 3 + 3 \nmid 3 = 1[/m]
[m]n = 4 \Rightarrow Pf = \{ 3 \}[/m], da [m]n = 1 \mid 4 + 2\mid 4 + 3 \nmid 4 + 4 \nmid 4 = 3[/m]
[m]n = 5 \Rightarrow Pf = \{ 1 \}[/m], da [m]n = 1 \mid 5 + 2 \nmid 5 + 3 \nmid 5 + 4 \nmid 5 + 5 \nmid 5 = 1[/m]
[m]n = 6 \Rightarrow Pf = \{ 6 \}[/m], da [m]n = 1 \mid 6 + 2 \mid 6 + 3 \mid 6 + 4 \nmid 6 + 5 \nmid 6 + 6 \nmid 6 = 6[/m]
[m]n = 7 \Rightarrow Pf = \{ 1 \}[/m], da [m]n = 1 \mid 7 + 2 \nmid 7 + 3 \nmid 7 + 4 \nmid 7 + 5 \nmid 7 + 6 \nmid 7 + 7 \nmid 7 = 1[/m]
[m]n = 8 \Rightarrow Pf = \{ 7 \}[/m], da [m]n = 1 \mid 8 + 2 \mid 8 + 3 \nmid 8 + 4 \mid 8 + 5 \nmid 8 + 6 \nmid 8 + 7 \nmid 8 + 8 \nmid 8 = 7[/m]
[m]n = 9 \Rightarrow Pf = \{ 9 \}[/m], da [m]n = 1 \mid 9 + 2 \nmid 9 + 3 \mid 9 + 4 \nmid 9 + 5 \nmid 9 + 6 \nmid 9 + 7 \nmid 9 + 8 \nmid 9 + 9 \nmid 9 = 4[/m]
Wenn also ein [m]n \in \IN[/m] gefunden wird, so dass [m]Pf = \emptyset[/m] nicht wegen [m]n = 6 \Rightarrow Pf = \{ 6 \}[/m] gilt,
dann reicht es als Nachweis, dass [m]Pf \not= \emptyset[/m] gilt, richtig?
-------------
Nochmal zu Aufgabenteil [m]c)[/m]:
Es ist zu zeigen, dass [m]n \in Pf \Rightarrow 2n = \summe_{i|n}{} i \wedge 2n = \summe_{i|n}{} i \Rightarrow n \in Pf[/m] gilt.
Ich bilde jeweils die Negation der beiden o.g. Aussagen und zeige, dass diese (Negationen) falsch sind,
was wiederum heißen muss, dass die Implikationen in beiden Richtungen wahr sein müssen.
Hier die Negationen der beiden Implikationen:
[m] \neg(n \in Pf \Rightarrow 2n = \summe_{i|n}{} i) \Leftrightarrow n \in Pf \wedge 2n \not= \summe_{i|n}{} i \Leftrightarrow n = \summe_{i|n, i\not=n}^{} i \wedge 2n \not= \summe_{i|n}{} i [/m]
[m] \neg(2n = \summe_{i|n}{} i \Rightarrow n \in Pf) \Leftrightarrow 2n = \summe_{i|n}{} i \wedge n \not\in Pf \Leftrightarrow 2n = \summe_{i|n}{} i \wedge n \not= \summe_{i|n, i\not=n}^{} i [/m]
Sei [m]n = 6[/m].
Dann gilt mit [m]n = \summe_{i|n, i\not=n}^{} i : n = 1 + 2 + 3 = 6[/m]
Dann gilt mit [m]2n \not= \summe_{i|n}{} i : 2n \not= 1 + 2 + 3 + 6 \Leftrightarrow 2n \not= 12 \Leftrightarrow n \not= 6[/m]
Also steht da: [m]n = 6 \wedge n \not= 6[/m], was nicht wahr sein, denn es gibt kein [m]n \in \IN[/m], was aus der Aussageform
eine wahre Aussage machen kann.
Nochmal: Sei [m]n = 6[/m].
Dann gilt mit [m]2n = \summe_{i|n}{} i : 2n = 1 + 2 + 3 + 6 \Leftrightarrow 2n = 12 \Leftrightarrow n = 6 [/m]
Dann gilt mit [m]n \not= \summe_{i|n, i\not=n}^{} i : n \not= 1 + 2 + 3 \Leftrightarrow n \not= 6[/m]
Also steht da: [m]n = 6 \wedge n \not= 6[/m], was nicht wahr sein, denn es gibt kein [m]n \in \IN[/m], was aus der Aussageform
eine wahre Aussage machen kann.
Es wurde also ein [m]n \in \IN[/m] gefunden, für das beide Negationen der Implikationen falsch werden, also muss [m]n \in Pf \Leftrightarrow 2n = \summe_{i|n}^{} i[/m] wahr sein,
was nachzuweisen war.
Passt das jetzt so?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:20 Do 02.10.2014 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|