www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Aufgabe zur Integralrechnung
Aufgabe zur Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe zur Integralrechnung: Integral berechnen
Status: (Frage) beantwortet Status 
Datum: 21:00 So 28.11.2004
Autor: Olaf

Hi Leute,

ich hab en problem mit einer Aufgabe:
Berechne das Integral der Funktion f über [0;6] und [mm] f(x)=2x^2 [/mm] mit Hilfe der des Grenzwertes der Obersumme.

Wie sieht da der Lösungsweg aus? Wie könnte ich daran gehn?

Vielen Dank schonmal im Voraus für eure Hilfe!

Olaf

        
Bezug
Aufgabe zur Integralrechnung: Ansatz
Status: (Antwort) fertig Status 
Datum: 21:54 So 28.11.2004
Autor: Bastiane

Hallo Olaf!
Also, wenn ich mich nicht irre, dann sind Obersummen die "Streifen", die man "über" die Kurve legt, so dass immer ein "Ende" auf der Kurve und das andere oberhalb liegt. Liege ich da richtig? Nun ja, diese müsstest du dann wohl einfach mal mathematisch aufschreiben für deine Funktion (ich denke, dass müsste irgendwie funktionieren, wenn du die Funktion mal zeichnest und dann auch deine "Streifen" reinzeichnest), wobei du zum Beispiel n als Breite nehmen kannst, und dann musst du dein n gegen [mm] \infty [/mm] gehen lassen.
Und da man die Funktion ja recht einfach integrieren kann, kannst du das Ergebnis auch gleich überprüfen:
[mm] \integral_{0}^{6}{2x^2dx}=[\bruch{2}{3}x^3]_{0}^{6}=\bruch{2}{3}6^3=144 [/mm]

Hilft dir das schon mal?

Ergänzung: MBIntegral in unserer Mathebank [informix]

Viele Grüße
Bastiane
[cap]

Bezug
        
Bezug
Aufgabe zur Integralrechnung: obersumme
Status: (Antwort) fertig Status 
Datum: 00:22 Mo 29.11.2004
Autor: Grizzlitiger

hi
also mit der obersumme berechnet man das ja eigentlich noch etwas anderes und zwar:
Vorraussetzung ist IMMER, dass die Funktion über dem Intervall monoton ist. GAAAAANZ Wichtig sonst geht das so nicht.

Ich hab das jetzt schon mit Ober- und Untersumme zusammen gemacht, weil das ja eh letztlich dann dein Ziel ist. Nämlich eine numerische Annäherung an das Integral.

f(x)=2x² n=Zahl der Teilungen dieses Intervalls

[mm] \integral_{a}^{b} [/mm] {f(x) dx}

[mm] \approx [/mm]  b-a/n*(f(a)+2*  $ [mm] \summe_{i= f1 }^{ fn-1} [/mm] $   f1= f(x-1) und fn-1=f(xn-1) das ging nur wegen dieses formelsystems nich....
Man kann also erkennen je großer n desto genauer der Wert für das Integral.

Ich hoffe ich konnte etwas weiterhelfen....

Johannes

PS:Das ist nur die allgemeine Form, weil das nicht sinnvoll ist da jetzt eine spezielle Form zu schreiben, aber wenn du das möchtest kann cih das auch trotzdem nochmal machen





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de