www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Aufgaben zur Mengenlehre
Aufgaben zur Mengenlehre < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgaben zur Mengenlehre: Einführungsaufgaben
Status: (Frage) beantwortet Status 
Datum: 15:56 So 27.10.2013
Autor: majag001

Aufgabe
1 ) Stelle die folgenden Mengen in der aufzählenden Form dar!
a)
N1 := { x element von Z | |x| kleiner gleich 4.5 }

b) N2 := { x element von R | [mm] 2x^2 [/mm] + 3x = 2}.

2) Beschreibe die folgenden Mengen durch charakterristische Eigenschaften , also nicht in aufzählender Form!

a) N3 := { 5, 7, 9, 11, 13, 15, . . .}
b) N4 := { 1, 2, 5, 10, 17, 26, 37, . . . } .

Hallo zusammen,
ich bin in der Mengenlehre eine echte Niete, und weiß nicht so recht, was die exakte Lösung ist für die o.g. Aufgaben, kennt sich einer damit besser aus als ich ? (bestimmt :D)

Ich bedanke mich schon einmal für eure Zeit..
LG
Marvin

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Aufgaben zur Mengenlehre: Antwort
Status: (Antwort) fertig Status 
Datum: 16:35 So 27.10.2013
Autor: M.Rex

Hallo und [willkommenmr]

> 1 ) Stelle die folgenden Mengen in der aufzählenden Form
> dar!
> a)
> N1 := { x element von Z | |x| kleiner gleich 4.5 }

Welche Ganzen Zahlen haben denn einen Betrag, der kleiner als 4,5 ist? So viele sind das nicht. Zähle diese auf.

>

> b) N2 := { x element von R | 2x² + 3x = 2}.

Auch hier löse erstmal die Gleichung [mm] 2x^{2}+3x=2 [/mm] mit bekannten Mitteln.


>

> 2) Beschreibe die folgenden Mengen durch charakterristische
> Eigenschaften , also nicht in aufzählender Form!

>

> a) N3 := { 5, 7, 9, 11, 13, 15, . . .}

Du siest hoffentlich, dass du in jedem Schritt 2 addieren musst, daher bietet sich eine lineare Funktion an.
Da du im ersten Folgenglied aber die 5 hast starte dort.

Du hsat also:
für das erste Gleid der Folge
[mm] 5=5+\red{0}\cdot2=5+(\green{1}-1)\cdot2 [/mm]

für das zweite Element
[mm] 7=5+\red{1}\cdot2=5+(\green{2}-1)\cdot2 [/mm]

Für das dritte Element
[mm] 9=5+\red{2}\cdot2=5+(\green{3}-1)\cdot2 [/mm]

Für das vierte Element
[mm] 11=5+\red{3}\cdot2=5+(\green{4}-1)\cdot2 [/mm]

Für das fünfte Element
[mm] 13=5+\red{4}\cdot2+(\green{5}-1)\cdot2 [/mm]

Wie lautet dann wohl die "Formel" für das n-te Element?




> b) N4 := { 1, 2, 5, 10, 17, 26, 37, . . . } .

Erkennst du, dass jede Zahl der Nachfolger einer Quadratzahl ist?

Versuche das mal, in eine Gleichung zu packen

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de