Auflösbare Gruppe mit 84 Elem. < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:25 So 08.02.2009 | Autor: | algieba |
Aufgabe | Ist jede Gruppe mit 84 Elementen auflösbar? |
Hi
Unser Ansatz:
84 = 2*2*3*7
Anzahl der 7-Sylows: 1 (aus Sylowsätzen)
[mm] $\Rightarrow$ [/mm] Die eine 7-Sylow ist Normalteiler
[mm] $\Rightarrow \{e\}$ [/mm] ist Normalteiler von [mm] $S_7$ [/mm] (Quotient 7) und [mm] $S_7$ [/mm] ist Normalteiler von G (Unsere Gruppe mit 84 Elementen) (Quotient 12).
Daraus folgt die Frage ob Gruppen mit 12 elementen auflösbar sind.
12=2*2*3
Dann gibt es entweder 1 oder 3 2-Sylows, und entweder 1 oder 4 3-Sylows.
Wie geht es hier weiter???
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:57 So 08.02.2009 | Autor: | felixf |
Hallo
> Ist jede Gruppe mit 84 Elementen auflösbar?
> Hi
>
> Unser Ansatz:
> 84 = 2*2*3*7
> Anzahl der 7-Sylows: 1 (aus Sylowsätzen)
> [mm]\Rightarrow[/mm] Die eine 7-Sylow ist Normalteiler
> [mm]\Rightarrow \{e\}[/mm] ist Normalteiler von [mm]S_7[/mm] (Quotient 7)
> und [mm]S_7[/mm] ist Normalteiler von G (Unsere Gruppe mit 84
> Elementen) (Quotient 12).
>
> Daraus folgt die Frage ob Gruppen mit 12 elementen
> auflösbar sind.
> 12=2*2*3
> Dann gibt es entweder 1 oder 3 2-Sylows, und entweder 1
> oder 4 3-Sylows.
> Wie geht es hier weiter???
Falls eine Gruppe mit 12 Elementen 4 3-Sylows hat, wieviele Elemente koennen dann noch Ordnung 2 oder 4 haben? Sprich, was sagt das ueber die Anzahl der 2-Sylows aus?
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:07 So 08.02.2009 | Autor: | algieba |
Wenn wir 4 3-Sylows haben, dann haben wir 8 Elemente mit Ordnung 3, eines der 12 Elemente ist das neutrale, also bleiben noch 3 Elemente übrig die Ordnung 2 oder 4 haben können.
Wenn wir jetzt aber 3 2-Sylows haben, dann gibt es kein Element mehr mit Ordnung 4, und auch keinen Erzeuger mit Ordnung 12. Dann wäre sie nicht abelsch, und demnach auch nicht auflösbar.
Wenn es jetzt aber nur eine 2-Sylow gibt, dann haben wir noch 2 Elemente mit Ordnung 12. Damit wäre sie zyklisch und abelsch.
Wie bringt uns das jetzt aber weiter?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 02:33 Mo 09.02.2009 | Autor: | felixf |
Hallo
> Wenn wir 4 3-Sylows haben, dann haben wir 8 Elemente mit
> Ordnung 3, eines der 12 Elemente ist das neutrale, also
> bleiben noch 3 Elemente übrig die Ordnung 2 oder 4 haben
> können.
Genau.
Also, wieviele 2-Sylow-Untergruppen kann es geben? (Die duerfen ja nicht komplett die gleichen Elemente umfassen, sonst sind sie bereits gleich...)
> Wenn wir jetzt aber 3 2-Sylows haben, dann gibt es kein
> Element mehr mit Ordnung 4,
Wie kommst du jetzt darauf?
> Wenn es jetzt aber nur eine 2-Sylow gibt, dann haben wir
> noch 2 Elemente mit Ordnung 12. Damit wäre sie zyklisch und
> abelsch.
Moment, wieso das jetzt? Das geht doch gar nicht, wenn es 4 3-Sylow-Untergruppen gibt!
Ihr braucht doch erstmal nur einen Normalteiler zu finden und die Gruppe dann modulo diesem Normalteiler zu betrachten (dies hat wenig genug Elemente dass es automatisch abelsch ist und somit aufloesbar), und den Normalteiler selber (fuer den gilt das gleiche).
LG Felix
|
|
|
|