www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Auflösen einer Funktion
Auflösen einer Funktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Auflösen einer Funktion: Im Zweifel
Status: (Frage) beantwortet Status 
Datum: 23:20 So 23.05.2010
Autor: tumas

[mm] 6x^{2} [/mm] - [mm] \bruch{1}{2}x [/mm] - [mm] \bruch{100}{x} [/mm]

Wie kann meine eine solche Funktion nach x auflösen ? Pq Formel geht nicht. Welche Möglichkeiten habe ich noch? Newton?

        
Bezug
Auflösen einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:24 So 23.05.2010
Autor: metalschulze

Hallo,

> [mm]6x^{2}[/mm] - [mm]\bruch{1}{2}x[/mm] - [mm]\bruch{100}{x}[/mm]
>  
> Wie kann meine eine solche Funktion nach x auflösen ? Pq
> Formel geht nicht. Welche Möglichkeiten habe ich noch?
> Newton?

erstmal: [mm] 6x^2 [/mm] - [mm] \frac{1}{2}x [/mm] - [mm] \frac{100}{x} [/mm] = ???? höchstwahrscheinlich 0 oder? dann also: [mm] \cdot [/mm] x
[mm] 6x^3 [/mm] - [mm] \frac{1}{2}x^2 [/mm] -100 = 0
damit hast du eine nichtlineare Funktion. Entweder Nullstelle "raten", oder eben numerisch lösen mit z.B. Newton ganz recht

Gruß Christian

Bezug
                
Bezug
Auflösen einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:33 So 23.05.2010
Autor: tumas

Hm Vielen Dank, du hast also mal x multipliziert. Mit Newton komme ich ja nicht genau dran, welche möglichkeit gibt die Stelle genau zu bestimmen? Natürlich mit einem Taschenrechner, aber das ist keine Kunst ;)



Bezug
                        
Bezug
Auflösen einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:43 So 23.05.2010
Autor: metalschulze


> Hm Vielen Dank, du hast also mal x multipliziert. Mit
> Newton komme ich ja nicht genau dran, welche möglichkeit
> gibt die Stelle genau zu bestimmen? Natürlich mit einem
> Taschenrechner, aber das ist keine Kunst ;)
>  

Wie meinst du nicht genau? Du kannst Newton solange anwenden, bis es dir genau genug ist. Taschenrechner macht auch nichts anderes....
Wenn du jetzt meinst du willst z.B. x = [mm] \frac{1}{3} [/mm] haben statt [mm] \approx [/mm] 0.333...
dann weiss ich nicht weiter, den exakten Wert kannst du nur durch probieren bestimmen. Also Nullstelle "raten"


Gruß Christian


Bezug
                                
Bezug
Auflösen einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:09 Mo 24.05.2010
Autor: tumas

Ich dachte, dass man bei Funktionen ab dem 5 Grad Newton anwendet, um sich anzunähern. Um genau zu bestimmen gibt es doch die Formel von Cardano. Sollte es damit nicht funktionieren?
Bezug
                                        
Bezug
Auflösen einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 01:37 Mo 24.05.2010
Autor: Blech

Hi,

> Ich dachte, dass man bei Funktionen ab dem 5 Grad Newton
> anwendet, um sich anzunähern. Um genau zu bestimmen gibt
> es doch die Formel von Cardano. Sollte es damit nicht
> funktionieren?

Google wird Dich zur Wikipedia-Seite führen, wo die Formel ausführlich erklärt ist. Ich wünsch Dir viel Spaß dabei. =)

Wenn man Gleichungen >2. Grades exakt löst, dann entweder

1. weil man direkt eine Lösung sieht,
2. weil Mathematica oder Maple eine exakte Lösung ausspucken, oder
3. weil man der numerischen Lösung ansieht, was der exakte Wert wohl war und das austestet.


ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de