www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Aufstellen der Vektorgleichung
Aufstellen der Vektorgleichung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufstellen der Vektorgleichung: und Bestimmung der FM
Status: (Frage) beantwortet Status 
Datum: 10:22 Fr 22.08.2008
Autor: RedSunset

Aufgabe
Aufstellen der Vektorgleichung und Bestimmung der Fundamentalmatrix von DGLs der Art:
(I) u^(4) - 8*u^(2) + 15
(II) u^(4) - 8*u^(2) + 15u
(III) (I) u^(4) - 8*u^(3) + 15

usw.

Hallo,

ich möchte zu der DGL u^(2) - 8*u' + 15u die Fundamental matrix bestimmen.
Hier gehe ich ja wie folgt vor:
definiere:
x:=u'
x':=u^(2)=8*u'-15*u=8*x-15*u

daraus folgt die Gleichung
[mm] \vektor{u \\ x}^' [/mm] = [mm] \pmat{ 0 & 1 \\ -15 & 8 } [/mm] * [mm] \vektor{u \\ x} [/mm]

Die Fundamentalmatrix erhält man nun bequem über die Eigenwerte und Eigenvektoren.

Aber wie gehe ich an eine Aufgabe ran die z.b. wie folgt aussieht.
(Ich benenne mal die einzelnen Beispiele durch)

(I) u^(4) - 8*u^(2) + 15
(II) u^(4) - 8*u^(2) + 15u
(III) (I) u^(4) - 8*u^(3) + 15

usw.

wie erhalte ich hier nun die Vektorgleichung und die zugehörige Fundamentalmatrix?

Vielen Dank für jegliche Antwort im Vorraus.

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
[http://matheplanet.com/matheplanet/nuke/html/viewtopic.php?topic=107896&start=0&lps=785809#v785809]

mit besten Grüßen,

RedSunset

        
Bezug
Aufstellen der Vektorgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:46 Fr 22.08.2008
Autor: Arralune

Das geht exakt genauso, du brauchst nur mehr Hilfvariablen. Wenn du [mm]u^{(4)}[/mm] hast, setzt du einfach [mm]x_0=u[/mm], [mm]x_1=x_0'[/mm], [mm]x_2=x_1'[/mm], [mm]x_3=x_2'[/mm], [mm]x_4=x_3'[/mm]. Es gilt dann ja [mm]x_i=u^{(i)}[/mm]

Bezug
                
Bezug
Aufstellen der Vektorgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:23 Fr 22.08.2008
Autor: RedSunset

erstmal vielen Dank für deine schnelle Antwort.
Was ich hier noch nicht verstehe ist wie ich dann für Bsp. (I) die Vektorgleichung wie in dem von mir gezeigten Beispiel aufstelle. Das will mir irgendwie nicht gelingen dies so zurückzuführen dass ich eben auf die Gestalt

v Vektor, A Matrix:

v'=A*v

komme.

Vielen Dank für jegliche Antwort im Vorraus.

Beste Grüße,

RedSunset

Bezug
                        
Bezug
Aufstellen der Vektorgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:58 Fr 22.08.2008
Autor: Arralune

Ich nehme mal (II) (die anderen sind inhomogen):
[mm]u^{(4)} - 8*u^{(2)} + 15u=0[/mm]
[mm]x_0=u[/mm], [mm]x_i=x_{i-1}'[/mm]
Also haben wir insgesamt:
[mm]x_0' = x_1[/mm]
[mm]x_1' = x_2[/mm]
[mm]x_2' = x_3[/mm]
[mm]x_3' = 8*x_2-15x_0[/mm]
Also
[mm]x' = \pmat{ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -15 & 0 & 8 & 0} * x[/mm]

Bezug
                                
Bezug
Aufstellen der Vektorgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:50 Fr 22.08.2008
Autor: RedSunset

super , jetzt hab ich es verstanden !

Also z.b. u^(3)+4u^(2)+3u wäre dann über die Vektorgleichung

[mm] x'=\pmat{ 0 & 1 & 0 \\ 0 & 0 & 1\\ -3 & 0 & -4} [/mm] * x

lösbar richtig?

Bezug
                                        
Bezug
Aufstellen der Vektorgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:12 Fr 22.08.2008
Autor: Arralune

genau :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de