www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Aufstellen von AWP
Aufstellen von AWP < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufstellen von AWP: Idee
Status: (Frage) beantwortet Status 
Datum: 20:29 Mo 11.07.2011
Autor: Rowdy_No

Aufgabe
Stellen Sie basierend auf
[mm] \vektor{y_{1}' \\ y_{2}'}=\vektor{\frac{1}{3}(y_{1}-y_{2})(1-y_{1}-y_{2}) \\ y_{1}(2-y_{2})} [/mm]
ein AWP auf und berechnen sie mit geeigneten Methoden Näherungslösungen.

Ich habe jetzt zwar einige kritische Punkte ausgerechnet wo [mm] \vektor{y_{1}'\\y_{2}'} [/mm] = [mm] \vektor{0 \\ 0} [/mm] und mir wurde als numerische Verfahren das eulersche empfohlen aber egal welches Verfahren ich nehme, ich brauch ja erstmal einen Startwert. Kann mir da irgendwie geholfen werden?

MfG
Rowdy

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://matheplanet.com/ (aber bisher keine Antwort bekommen)

        
Bezug
Aufstellen von AWP: Antwort
Status: (Antwort) fertig Status 
Datum: 08:31 Di 12.07.2011
Autor: Al-Chwarizmi


> Stellen Sie basierend auf
> [mm]\vektor{y_{1}' \\ y_{2}'}=\vektor{\frac{1}{3}(y_{1}-y_{2})(1-y_{1}-y_{2}) \\ y_{1}(2-y_{2})}[/mm]
>  
> ein AWP auf und berechnen sie mit geeigneten Methoden
> Näherungslösungen.
>  Ich habe jetzt zwar einige kritische Punkte ausgerechnet
> wo [mm]\vektor{y_{1}'\\y_{2}'}[/mm] = [mm]\vektor{0 \\ 0}[/mm] und mir wurde
> als numerische Verfahren das eulersche empfohlen aber egal
> welches Verfahren ich nehme, ich brauch ja erstmal einen
> Startwert. Kann mir da irgendwie geholfen werden?
>  
> MfG
>  Rowdy


Guten Tag,

offenbar darf ein Startpunkt frei gewählt werden.
Die "kritischen Punkte" sind dafür jedenfalls beim
Eulerverfahren nicht geeignet. Also wähl dir doch
einen Punkt, der nicht allzu dicht bei diesen liegt.
Ich würde es zum Beispiel einmal mit [mm] (x_0|y_0)=(2|0) [/mm]
oder [mm] (x_0|y_0)=(0|4) [/mm] versuchen. Mit Euler zu beginnen
ist OK, aber andere Verfahren ergeben natürlich
bessere Approximationen.

LG   Al-Chw.


Die vorgeschlagenen Startpunkte führen zu recht
kläglichen Lösungskurven. Deshalb würde ich vor-
schlagen, das Ganze mit einer Serie von Startpunkten
durchzuspielen, damit das Verhalten der DGL einiger-
maßen sichtbar wird.
Beispiel:  [mm] x_0=-5 [/mm] , [mm] $y_0\in\{-10, -9, -8,\,.....\,+9,+10\}$[/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de