www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Graphentheorie" - Ausgewogene Graphen
Ausgewogene Graphen < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ausgewogene Graphen: Sind Bäume ausgewogen?
Status: (Frage) beantwortet Status 
Datum: 20:05 Mo 12.04.2010
Autor: no_brain_no_pain

Aufgabe
Also ich habe hier folgende Definition vorliegen:

Ein Graph $H$ heißt ausgewogen, wenn für alle seine Teilgraphen [mm] $H`\subset [/mm] H$ gilt:

[mm] $\overline{d}(H`) \le \overline{d}(H)$ [/mm]

wobei mit [mm] $\overline{d}(H)$ [/mm] der Durchschnittsgrad von $H$ gemeint ist.

Im Speziellen beschäftige ich mich grade mit dem Satz von Erdös & Renji falls den jemand kennt. Der Inhalt dieses Satzes ist aber grade nicht so wichtig. Jedenfalls wird dieser Satz dann in einem Korollar auf Bäume (also zusammenhängende, kreisfreie Graphen) angewendet und hierfür braucht man als Voraussetzung, dass diese ausgewogen sind.

Wenn ich den Begriff der Ausgewogenheit richtig verstanden habe, sind Bäume aber doch i. A. nicht ausgewogen, oder?







Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ausgewogene Graphen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:52 Di 13.04.2010
Autor: no_brain_no_pain

Hallo,
mittlerweile habe ich die Antwort gefunden. Vielleicht bringts ja irgendwem was, also führe ich das hier kurz aus:

Bäume sind ausgewogen!

Zum Beweis hiervon braucht man die Aussage, dass für jeden Graph $G=(V,E)$ mit Knotenanzahl $|V|=n$ und Kantananzahl $|E|=m$ gilt:

[mm] $\summe_{v \in V} [/mm] d(v) = 2m$,

wobei mit $d(v)$ wiederum wie oben der Grad von $v [mm] \in [/mm] V$, also die Anzahl der inzidierenden Kanten gemeint ist.
Hieraus ergibt sich mit gleicher Definition wie oben:

[mm] $\overline{d}(G) [/mm] = [mm] \bruch{1}{|V|} \summe_{v \in V} [/mm] d(v)  [mm] =\bruch{2m}{n}$ [/mm]

Sei nun $T$ ein beliebiger Baum mit $k$ Knoten, dann hat $T$ wegen der Kreisfreiheit und des Zusammenhangs $k-1$ Kanten, woraus folgt:

[mm] $\overline{d}(T) [/mm] = [mm] \bruch{2(k-1)}{k}$ [/mm]

Betrachtet man nun einen beliebigen Teilgraphen $H$ von $T$, der genau einen Knoten weniger besitzt. so verliert $H$ wegen des Zusammenhangs mindestens eine Kante, woraus folgt:

[mm] $\overline{d}(H) \le \bruch{2(k-2)}{k-1}$ [/mm]

Deshalb gilt:

[mm] $\overline{d}(H) \le \overline{d}(T)$ [/mm]

wegen der Monotonie der Funktion $f(x) [mm] =\bruch{2(x-1)}(x)$. [/mm]

Induktiv folgt nun auch [mm] $\overline{d}(H') \le \overline{d}(T)$ [/mm] für alle Teilgraphen $H'$ von $T$, womit die Ausgewogenheit von $T$ gezeigt ist.

OK, ist doch was länger geworden. Schönen Gruß.
Andre

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de