www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Ausklammern bei Nullstellen !!
Ausklammern bei Nullstellen !! < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ausklammern bei Nullstellen !!: Frage
Status: (Frage) beantwortet Status 
Datum: 10:46 Sa 26.03.2005
Autor: steph

Hallo,
und zwar die Aufgabe lautet:

f(x)= [mm] (x^2+2a) [/mm] (x2+15/2x-4)

x1/2= +-Wurzel -2a

x3= -8

x4=1/2

also a muss kleiner sein als 0 (a<0)

a= -32 gibt es 3 Nullstellen x1 = -8 doppelt
x2= +8 einfach, und x3 = 1/2 einfach

dann für a = -1/8 gibt es 3 Nullstellen x1= 1/2 doppelt x2 = -1/2 einfach
x3 = -8 einfach

a=0 gibt es drei Nullstellen nämlich x1=0 doppelt
x2=1/2 einfach x3= -8 einfach

a>0 x1=-8 einfach x2= 1/2 einfach

Muss ich dann noch dazuschreiben IR=\ {-32, -1/8}

Ist diese Aufgabe dann so korrekt??

VIelen Dank für Eure Bemühungen !!
steph

        
Bezug
Ausklammern bei Nullstellen !!: Fehler bei Frage!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:47 Sa 26.03.2005
Autor: steph

die Ausgangsfunktion stimmte nicht ganz, jetzt ist sie korrekt so heißt sie:

[mm] f(x)=(x^2+2a) (x^2+15/2x-4) [/mm]

Bezug
        
Bezug
Ausklammern bei Nullstellen !!: Antwort
Status: (Antwort) fertig Status 
Datum: 13:10 Sa 26.03.2005
Autor: Zwerglein

Hi, steph,

  

> f(x)= [mm](x^2+2a)[/mm] (x2+15/2x-4)
>  
> x1/2= +-Wurzel -2a
>  
> x3= -8
>  
> x4=1/2
>  
> also a muss kleiner sein als 0 (a<0)

Beachte meine vorigen Antworten: Wenn a < 0 nicht ausdrücklich vorgegeben war, musst Du auch a>0 und a=0 berücksichtigen!
Aber das tust Du ja unten: Das heißt, Du drückst Dich nur falsch aus. Sag' lieber:
1. Fall: a<0
Sonderfall 1:

> a= -32 gibt es 3 Nullstellen x1 = -8 doppelt
>  x2= +8 einfach, und x3 = 1/2 einfach

RICHTIG!

Sonderfall 2:

> dann für a = -1/8 gibt es 3 Nullstellen x1= 1/2 doppelt x2
> = -1/2 einfach
>  x3 = -8 einfach

RICHTIG!
(Hier würd ich dann mit a<0 "weitermachen": siehe unten!)

2. Fall: a=0  

> a=0 gibt es drei Nullstellen nämlich x1=0 doppelt
>  x2=1/2 einfach x3= -8 einfach

Richtig!

3. Fall:

> a>0 x1=-8 einfach x2= 1/2 einfach

RICHTIG!
  

> Muss ich dann noch dazuschreiben IR=\ {-32, -1/8}

Richtig wäre die Schreibweise: a [mm] \in [/mm] IR \ {-32, -1/8}

Diese Lösung gehört noch zum 1. Fall und es gibt hier die 4 von Dir bereits anfangs notierten Nullstellen, alle einfach.
  

> Ist diese Aufgabe dann so korrekt??

Wenn Du Dir noch Deine kleinen Ungenauigkeiten abgewöhnst und die einzelnen Fälle etwas übersichtlicher aufbaust (etwa so wie oben!), dann bist Du auf einem guten Weg!

Bezug
                
Bezug
Ausklammern bei Nullstellen !!: Nachfrage an zwerglein !!
Status: (Frage) beantwortet Status 
Datum: 16:00 Sa 26.03.2005
Autor: steph

"Richtig wäre die Schreibweise: a  IR \ {-32, -1/8}

Diese Lösung gehört noch zum 1. Fall und es gibt hier die 4 von Dir bereits anfangs notierten Nullstellen, alle einfach. "

Vielen Dank zweglein !! Blos was meinst du mit "es gibt hier die 4 von Dir..........." ?????

Wenn du mir das noch erklären würdest, würde ich die Aufgabe dann zu 100% verstehen !!

DANKE

gruss
steph

Bezug
                        
Bezug
Ausklammern bei Nullstellen !!: Antwort
Status: (Antwort) fertig Status 
Datum: 11:03 So 27.03.2005
Autor: Astrid

Hallo steph,

ich versuche mal, deine Rückfrage zu beantworten, ich hoffe in zwergleins sinne. ;-)

> "Richtig wäre die Schreibweise: a  IR \ {-32, -1/8}
>
> Diese Lösung gehört noch zum 1. Fall und es gibt hier die 4
> von Dir bereits anfangs notierten Nullstellen, alle
> einfach. "
>  
> Vielen Dank zweglein !! Blos was meinst du mit "es gibt
> hier die 4 von Dir..........." ?????

Du hast in deinen Lösungen hauptsächlich die Spezialfälle behandelt, aber es kann auch vorkommen, dass es genau 4 verschiedene Nullstellen mit jeweils der Vielfachheit Eins gibt.

Du hattest ja geschrieben:

Nullstellen:
[mm]x_{1,2}=\pm \wurzel{-2a}[/mm]
[mm]x_3=-8[/mm]
[mm]x_4=\bruch{1}{2}[/mm]

Um die Lösungen zu beschreiben, musst du nun die bereits gemachten Fallunuterscheidungen darstellen: (Ich wiederhole jetzt vieles, und hoffe, dass es dadurch klarer wird. ;-)) Ich hoffe damit auch deine Frage in diesem Diskussionsstrang zu beantworten.

Fall 1: $D=0$
Dann hat [mm] $x_{1,2}$ [/mm] nur eine Lösung mit Vielfachheit 2.
Das ist genau dann der Fall, wenn $a=0$.

Fall 2: $D<0$
Dann hat [mm] $x_{1,2}$ [/mm] keine Lösung und es gibt insgesamt nur zwei Nullstellen.
Das ist genau dann der Fall, wenn $a>0$.

Fall 3: $D>0$
Dann hat [mm] $x_{1,2}$ [/mm] zwei Lösungen.
Dies ist genau dann der Fall, wenn $a<0$.
Normalerweise hat dann jede Nullstelle die Vielfachheit 1, es gibt aber zwei Ausnahmen: $a=-32$ und [mm] $a=\bruch{1}{8}$. [/mm] Dafür gelten die von dir beschriebenen Lösungen.
Sonst, also für [mm] a \in \IR \backslash \{-32,\bruch{1}{8} \}, \, a<0[/mm] gilt: Es gibt 4 Nullstellen, und zwar die oben beschriebenen [mm] x_1 [/mm] bis [mm] x_4. [/mm]

Ich hoffe, ich konnte es etwas klarer machen!

Viele Grüße
Astrid

Bezug
                                
Bezug
Ausklammern bei Nullstellen !!: Jawohl!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:40 So 27.03.2005
Autor: Zwerglein

Hi, Astrid,

genau so hab' ich's gemeint!
Und Du hast sogar meinen "Lapsus" entdeckt und ausgebügelt:
  

>  Sonst, also für [mm]a \in \IR \backslash \{-32,\bruch{1}{8} \}, a<0 [/mm]
> gilt: Es gibt 4 Nullstellen, und zwar die oben
> beschriebenen [mm]x_1[/mm] bis [mm]x_4.[/mm]

Das a<0 hatt' ich glatt vergessen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de