www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Ausmultiplizieren
Ausmultiplizieren < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ausmultiplizieren: Seite 26 Nr. 7
Status: (Frage) beantwortet Status 
Datum: 16:03 Sa 16.09.2006
Autor: PillePalle

Aufgabe
Zeigen Sie, dass der Graph der Funktion f zum Punkt P symmetrisch ist.
f(x) = [mm] 2x^3 [/mm] + [mm] 3x^2 [/mm] + x
P(-0,5/0)

Ich habe leider Probleme beim Ausmultipliezieren der Folgenden Funktionen(bei beiden sollte das gleiche ergebnis rauskommen):

f(-x-0,5) = [mm] 2*(-x-0,5)^3 [/mm] + [mm] 3*(-X-0,5)^2 [/mm] + (-x-0,5)

= [mm] 2[(-x-0,5)^2 [/mm] *  (-x-0,5)] + [mm] 3*(-x-0,5)^2 [/mm] +(-x-0,5)

= [mm] 2[-x^3 [/mm] - [mm] 0,5x^2 [/mm] -x -0,5x -1/4x -1/8] + [mm] 3X^2 [/mm] +3x +13/4 -x -0,5

= [mm] -2x^3 -x^2 [/mm] -(3/2)x -1/4 [mm] +3x^2 [/mm] +2x +11/4

= [mm] -2x^3 +2x^2 [/mm] +0,5x +2,5




-f(x-0,5)+0 = [mm] -[2*(x-0,5)^3 [/mm] + [mm] 3*(x-0,5)^2 [/mm] + (x-0,5)]

= - [mm] [2*(x^3 [/mm] - [mm] x^2 [/mm] +(1/4)x -1/8) + [mm] 3x^2 [/mm] - 2x + 11/4]

= - [mm] [2x^3 +x^2 [/mm] -1,5x +2,5]

= [mm] -2x^3 -x^2 [/mm] + 1,5x -2,5


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ausmultiplizieren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:28 Sa 16.09.2006
Autor: Freak_Master_Jo

Hallo Pille Palle!

Wenn du erstmal ein x ausklammerst geht das ganze etwas einfacher.
Dann hast du nämlich keine Trinomische sondern nur ne binomische Formel zum Auflösen.
Ich hab jetzt leider deine Rechnung nicht überprüft, aber nach meiner Rechnung ist der Graph punktsymmetrisch zu P.
Schau mal ob du's auch rausbekommst.
f(-x-0,5) = -2x³ + 0,5x
f(x-0,5) = 2x³ - 0,5x
Sollte stimmen.

Gruß Jochen

Bezug
                
Bezug
Ausmultiplizieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:40 Sa 16.09.2006
Autor: PillePalle

Wie sieht das aus wenn ich ein x ausklammer? =(
Kann mir bitte jemand den ersten Rechenweg geben, ich steh irgendwie grad auf dem schlauch.. danke

Bezug
                        
Bezug
Ausmultiplizieren: Antwort
Status: (Antwort) fertig Status 
Datum: 00:08 So 17.09.2006
Autor: M.Rex

Hallo

2x³+3x²+x = x*(2x²+3x+1)

Meinst du das mit der Frage?

Marius

Bezug
        
Bezug
Ausmultiplizieren: Antwort
Status: (Antwort) fertig Status 
Datum: 17:32 Sa 16.09.2006
Autor: informix

Hallo PillePalle und [willkommenmr],
> Zeigen Sie, dass der Graph der Funktion f zum Punkt P
> symmetrisch ist.
>  f(x) = [mm]2x^3[/mm] + [mm]3x^2[/mm] + x
>  P(-0,5/0)
>  Ich habe leider Probleme beim Ausmultipliezieren der
> Folgenden Funktionen(bei beiden sollte das gleiche ergebnis
> rauskommen):
>  

Hast du genau nach der Definition für MBsymmetrische Funktionen gerechnet?
f(a+x) + f(a-x) = 2b - es müsste also 0 herauskommen.

Wenn du nun noch den Term umformst zu $f(x) = [mm] x(2x^2+3x+1)$ [/mm]
dann geht die Rechnerei leichter.

$f(a+x) + f(a-x) = (a+x) [mm] (2(a+x)^2+3(a+x)+1) [/mm] + [mm] (a-x)(2(a-x)^2+3(a-x)+1)$ [/mm]

Tipp zum Aufschreiben: benutze unseren Formeleditor und schreibe [mm]...[/mm] nur einmal am Anfang und am Ende, dann kann man die Formeln besser lesen.

2. Tipp: rechne zunächst mit dem a statt 0,5, das schreibt sich leichter und ist übersichtlicher...

Gruß informix


Bezug
        
Bezug
Ausmultiplizieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:23 So 17.09.2006
Autor: PillePalle

Habe nun als Ergebnis raus
f(-x-0,5) = -2x³+0,5x
-f(x-0,5) = -2x³+0,5x

Ist das korrekt? danke für die Antwort.



Bezug
                
Bezug
Ausmultiplizieren: nur Mut - ist ok
Status: (Antwort) fertig Status 
Datum: 18:50 So 17.09.2006
Autor: informix


> Habe nun als Ergebnis raus
>  f(-x-0,5) = -2x³+0,5x
>  -f(x-0,5) = -2x³+0,5x
>  
> Ist das korrekt? danke für die Antwort.
>  

Damit hast du doch:
$f(-x-0,5) + f(x-0,5) = (-2x³+0,5x) +(2x³- 0,5x)  = 0$
und du bist fertig!

Lies noch einmal den Beitrag in unserer Wissensbank!

Gruß informix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de